Nuprl Lemma : comparison-test-for-divergence

x,y:ℕ ⟶ ℝ.  n.y[n]↑  (∃N:ℕ. ∀n:{N...}. ((r0 ≤ y[n]) ∧ (y[n] ≤ x[n])))  Σn.x[n]↑)


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ rleq: x ≤ y int-to-real: r(n) real: int_upper: {i...} nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q series-diverges: Σn.x[n]↑ diverges: n.x[n]↑ exists: x:A. B[x] member: t ∈ T and: P ∧ Q prop: cand: c∧ B uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} rless: x < y sq_exists: x:{A| B[x]} real: sq_stable: SqStable(P) squash: T nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] int_upper: {i...}
Lemmas referenced :  nat_wf rless_wf int-to-real_wf all_wf exists_wf le_wf rleq_wf rabs_wf rsub_wf rsum_wf int_seg_subtype_nat false_wf int_seg_wf int_upper_wf int_upper_subtype_nat series-diverges_wf real_wf imax_wf imax_nat nat_properties sq_stable__less_than nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf imax_ub rleq_functionality_wrt_implies rleq_weakening_equal int_seg_properties itermAdd_wf int_term_value_add_lemma rleq_functionality rabs_functionality rsum-difference rabs-of-nonneg rsum_nonneg rleq_transitivity rsum_functionality_wrt_rleq rabs-difference-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality independent_pairFormation promote_hyp hypothesis cut introduction extract_by_obid sqequalRule productEquality isectElimination natural_numberEquality lambdaEquality because_Cache setElimination rename applyEquality functionExtensionality addEquality independent_isectElimination functionEquality dependent_functionElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination imageMemberEquality baseClosed imageElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll inrFormation inlFormation

Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (\mSigma{}n.y[n]\muparrow{}  {}\mRightarrow{}  (\mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  ((r0  \mleq{}  y[n])  \mwedge{}  (y[n]  \mleq{}  x[n])))  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})



Date html generated: 2017_10_03-AM-09_19_59
Last ObjectModification: 2017_07_28-AM-07_44_41

Theory : reals


Home Index