Nuprl Lemma : comparison-test-for-divergence
∀x,y:ℕ ⟶ ℝ.  (Σn.y[n]↑ 
⇒ (∃N:ℕ. ∀n:{N...}. ((r0 ≤ y[n]) ∧ (y[n] ≤ x[n]))) 
⇒ Σn.x[n]↑)
Proof
Definitions occuring in Statement : 
series-diverges: Σn.x[n]↑
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_upper: {i...}
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
series-diverges: Σn.x[n]↑
, 
diverges: n.x[n]↑
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
guard: {T}
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
int_upper: {i...}
Lemmas referenced : 
nat_wf, 
rless_wf, 
int-to-real_wf, 
all_wf, 
exists_wf, 
le_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rsum_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
int_upper_wf, 
int_upper_subtype_nat, 
series-diverges_wf, 
real_wf, 
imax_wf, 
imax_nat, 
nat_properties, 
sq_stable__less_than, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
imax_ub, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
rleq_functionality, 
rabs_functionality, 
rsum-difference, 
rabs-of-nonneg, 
rsum_nonneg, 
rleq_transitivity, 
rsum_functionality_wrt_rleq, 
rabs-difference-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
independent_pairFormation, 
promote_hyp, 
hypothesis, 
cut, 
introduction, 
extract_by_obid, 
sqequalRule, 
productEquality, 
isectElimination, 
natural_numberEquality, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
addEquality, 
independent_isectElimination, 
functionEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
inrFormation, 
inlFormation
Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.    (\mSigma{}n.y[n]\muparrow{}  {}\mRightarrow{}  (\mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  ((r0  \mleq{}  y[n])  \mwedge{}  (y[n]  \mleq{}  x[n])))  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})
Date html generated:
2017_10_03-AM-09_19_59
Last ObjectModification:
2017_07_28-AM-07_44_41
Theory : reals
Home
Index