Nuprl Lemma : derivative-rsum
∀[I:Interval]
  ∀n:ℕ. ∀m:{n...}.
    ∀[f,f':{n..m + 1-} ⟶ I ⟶ℝ].
      ((∀k:{n..m + 1-}. d(f[k;x])/dx = λx.f'[k;x] on I) ⇒ d(Σ{f[k;x] | n≤k≤m})/dx = λx.Σ{f'[k;x] | n≤k≤m} on I)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I, 
rfun: I ⟶ℝ, 
interval: Interval, 
rsum: Σ{x[k] | n≤k≤m}, 
int_upper: {i...}, 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
r-ap: f(x), 
rfun-eq: rfun-eq(I;f;g), 
nequal: a ≠ b ∈ T , 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
guard: {T}, 
and: P ∧ Q, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
rfun: I ⟶ℝ, 
label: ...$L... t, 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
nat: ℕ, 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
trivial-int-eq1, 
decidable__equal_int, 
int_subtype_base, 
derivative-add, 
rsum_unroll, 
req_functionality, 
derivative_functionality, 
req_weakening, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_seg_properties, 
radd_wf, 
neg_assert_of_eq_int, 
assert_of_eq_int, 
eq_int_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int-to-real_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
decidable__le, 
primrec-wf2, 
less_than_wf, 
set_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
int_upper_properties, 
rsum_wf, 
subtract_wf, 
le_wf, 
interval_wf, 
nat_wf, 
int_upper_wf, 
rfun_wf, 
i-member_wf, 
real_wf, 
subtype_rel_self, 
derivative_wf, 
int_seg_wf, 
all_wf
Rules used in proof : 
cumulativity, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
instantiate, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
productElimination, 
dependent_set_memberEquality, 
functionExtensionality, 
setEquality, 
functionEquality, 
applyEquality, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
natural_numberEquality, 
addEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:Interval]
    \mforall{}n:\mBbbN{}.  \mforall{}m:\{n...\}.
        \mforall{}[f,f':\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].
            ((\mforall{}k:\{n..m  +  1\msupminus{}\}.  d(f[k;x])/dx  =  \mlambda{}x.f'[k;x]  on  I)
            {}\mRightarrow{}  d(\mSigma{}\{f[k;x]  |  n\mleq{}k\mleq{}m\})/dx  =  \mlambda{}x.\mSigma{}\{f'[k;x]  |  n\mleq{}k\mleq{}m\}  on  I)
Date html generated:
2018_05_22-PM-02_45_43
Last ObjectModification:
2018_05_21-AM-00_54_12
Theory : reals
Home
Index