Nuprl Lemma : mdist-difference2
∀[X:Type]. ∀[d:metric(X)]. ∀[x,a,b,y:X].  (|mdist(d;x;y) - mdist(d;a;b)| ≤ (mdist(d;x;a) + mdist(d;y;b)))
Proof
Definitions occuring in Statement : 
mdist: mdist(d;x;y)
, 
metric: metric(X)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
radd: a + b
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
rge: x ≥ y
, 
guard: {T}
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rleq_functionality_wrt_implies, 
rabs_wf, 
rsub_wf, 
mdist_wf, 
radd_wf, 
rleq_weakening_equal, 
r-triangle-inequality2, 
le_witness_for_triv, 
metric_wf, 
istype-universe, 
radd-preserves-rleq, 
rminus_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMinus_wf, 
itermVar_wf, 
rleq_weakening, 
mdist-symm, 
radd_functionality_wrt_rleq, 
mdist-difference, 
rleq_functionality, 
radd_functionality, 
rabs_functionality, 
rsub_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
int-to-real_wf, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
productElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
universeEquality, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
voidElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,a,b,y:X].
    (|mdist(d;x;y)  -  mdist(d;a;b)|  \mleq{}  (mdist(d;x;a)  +  mdist(d;y;b)))
Date html generated:
2019_10_29-AM-11_14_59
Last ObjectModification:
2019_10_02-AM-09_55_21
Theory : reals
Home
Index