Nuprl Lemma : mdist-difference2

[X:Type]. ∀[d:metric(X)]. ∀[x,a,b,y:X].  (|mdist(d;x;y) mdist(d;a;b)| ≤ (mdist(d;x;a) mdist(d;y;b)))


Proof




Definitions occuring in Statement :  mdist: mdist(d;x;y) metric: metric(X) rleq: x ≤ y rabs: |x| rsub: y radd: b uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a rge: x ≥ y guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  rleq_functionality_wrt_implies rabs_wf rsub_wf mdist_wf radd_wf rleq_weakening_equal r-triangle-inequality2 le_witness_for_triv metric_wf istype-universe radd-preserves-rleq rminus_wf itermSubtract_wf itermAdd_wf itermMinus_wf itermVar_wf rleq_weakening mdist-symm radd_functionality_wrt_rleq mdist-difference rleq_functionality radd_functionality rabs_functionality rsub_functionality req-iff-rsub-is-0 real_polynomial_null int-to-real_wf istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination equalityTransitivity equalitySymmetry sqequalRule lambdaEquality_alt dependent_functionElimination productElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate universeEquality natural_numberEquality approximateComputation int_eqEquality voidElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,a,b,y:X].
    (|mdist(d;x;y)  -  mdist(d;a;b)|  \mleq{}  (mdist(d;x;a)  +  mdist(d;y;b)))



Date html generated: 2019_10_29-AM-11_14_59
Last ObjectModification: 2019_10_02-AM-09_55_21

Theory : reals


Home Index