Nuprl Lemma : rational-inner-approx_wf

[x:ℕ+ ⟶ ℤ]. ∀[n:ℕ+].  (rational-inner-approx(x;n) ∈ ℝ)


Proof




Definitions occuring in Statement :  rational-inner-approx: rational-inner-approx(x;n) real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rational-inner-approx: rational-inner-approx(x;n) has-value: (a)↓ uimplies: supposing a nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q int_nzero: -o nequal: a ≠ b ∈  subtype_rel: A ⊆B
Lemmas referenced :  value-type-has-value int-value-type nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than le_int_wf eqtt_to_assert assert_of_le_int subtract_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf le_wf istype-le int-rdiv_wf intformeq_wf int_formula_prop_eq_lemma int_subtype_base nequal_wf int-to-real_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis multiplyEquality natural_numberEquality setElimination rename hypothesisEquality because_Cache applyEquality dependent_set_memberEquality_alt dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType inhabitedIsType lambdaFormation_alt equalityElimination productElimination equalityTransitivity equalitySymmetry equalityIstype promote_hyp instantiate cumulativity addEquality closedConclusion baseApply baseClosed sqequalBase axiomEquality isectIsTypeImplies functionIsType

Latex:
\mforall{}[x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (rational-inner-approx(x;n)  \mmember{}  \mBbbR{})



Date html generated: 2019_10_29-AM-10_02_19
Last ObjectModification: 2019_06_17-AM-11_37_02

Theory : reals


Home Index