Nuprl Lemma : rdiv-factorial-lemma3

x:ℝ. ∀b:ℕ.
  (((x x) ≤ r(b b))  (∀n:ℕ(((b ÷ 2) ≤ n)  ((x x) ≤ (r(((2 (n 1)) 1)!)/r(((2 n) 1)!))))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rmul: b int-to-real: r(n) real: nat: le: A ≤ B all: x:A. B[x] implies:  Q divide: n ÷ m multiply: m add: m natural_number: $n fact: (n)!
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] nat: true: True nequal: a ≠ b ∈  not: ¬A uimplies: supposing a sq_type: SQType(T) guard: {T} false: False ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q subtype_rel: A ⊆B nat_plus: + iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y le: A ≤ B uiff: uiff(P;Q)
Lemmas referenced :  rdiv-factorial-lemma2 le_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nat_wf rleq_wf rmul_wf int-to-real_wf real_wf rdiv_wf fact_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf nat_plus_wf rneq-int fact-non-zero rleq_functionality_wrt_implies rleq_weakening_equal fact_unroll_1 intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base add-subtract-cancel le_weakening2 decidable__lt nat_plus_properties intformless_wf int_formula_prop_less_lemma mul_preserves_le multiply-is-int-iff false_wf rleq-int-fractions
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination divideEquality setElimination rename because_Cache natural_numberEquality addLevel instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry voidElimination baseClosed multiplyEquality dependent_set_memberEquality addEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidEquality sqequalRule independent_pairFormation computeAll applyEquality productElimination Error :applyLambdaEquality,  pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}b:\mBbbN{}.
    (((x  *  x)  \mleq{}  r(b  *  b))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (((b  \mdiv{}  2)  \mleq{}  n)  {}\mRightarrow{}  ((x  *  x)  \mleq{}  (r(((2  *  (n  +  1))  +  1)!)/r(((2  *  n)  +  1)!))))))



Date html generated: 2016_10_26-AM-09_22_24
Last ObjectModification: 2016_08_25-PM-10_20_49

Theory : reals


Home Index