Nuprl Lemma : rdiv-factorial-lemma3
∀x:ℝ. ∀b:ℕ.
  (((x * x) ≤ r(b * b)) 
⇒ (∀n:ℕ. (((b ÷ 2) ≤ n) 
⇒ ((x * x) ≤ (r(((2 * (n + 1)) + 1)!)/r(((2 * n) + 1)!))))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
divide: n ÷ m
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
fact: (n)!
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
rdiv-factorial-lemma2, 
le_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nat_wf, 
rleq_wf, 
rmul_wf, 
int-to-real_wf, 
real_wf, 
rdiv_wf, 
fact_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
nat_plus_wf, 
rneq-int, 
fact-non-zero, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
fact_unroll_1, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-T-base, 
add-subtract-cancel, 
le_weakening2, 
decidable__lt, 
nat_plus_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
mul_preserves_le, 
multiply-is-int-iff, 
false_wf, 
rleq-int-fractions
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
divideEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
addLevel, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
baseClosed, 
multiplyEquality, 
dependent_set_memberEquality, 
addEquality, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
productElimination, 
Error :applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}b:\mBbbN{}.
    (((x  *  x)  \mleq{}  r(b  *  b))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (((b  \mdiv{}  2)  \mleq{}  n)  {}\mRightarrow{}  ((x  *  x)  \mleq{}  (r(((2  *  (n  +  1))  +  1)!)/r(((2  *  n)  +  1)!))))))
Date html generated:
2016_10_26-AM-09_22_24
Last ObjectModification:
2016_08_25-PM-10_20_49
Theory : reals
Home
Index