Nuprl Lemma : real-vec-free_wf
∀[k:ℕ]. ∀[L:ℝ^k List].  (real-vec-free(k;L) ∈ ℙ)
Proof
Definitions occuring in Statement : 
real-vec-free: real-vec-free(k;L)
, 
real-vec: ℝ^n
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec-free: real-vec-free(k;L)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
less_than: a < b
, 
squash: ↓T
, 
real-vec-sep: a ≠ b
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
int_seg_wf, 
length_wf, 
real-vec_wf, 
real_wf, 
real-vec-sep_wf, 
length_wf_nat, 
int-to-real_wf, 
real-vec-sum_wf, 
subtract_wf, 
real-vec-mul_wf, 
select_wf, 
int_seg_properties, 
sq_stable__less_than, 
real-vec-dist_wf, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
istype-le, 
add-is-int-iff, 
subtract-is-int-iff, 
intformless_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
istype-less_than, 
list_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
closedConclusion, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
universeIsType, 
independent_isectElimination, 
imageElimination, 
addEquality, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
productIsType, 
functionIsType, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[L:\mBbbR{}\^{}k  List].    (real-vec-free(k;L)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-08_45_08
Last ObjectModification:
2019_09_18-PM-01_54_29
Theory : reals
Home
Index