Nuprl Lemma : real-vec-free_wf

[k:ℕ]. ∀[L:ℝ^k List].  (real-vec-free(k;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  real-vec-free: real-vec-free(k;L) real-vec: ^n list: List nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-free: real-vec-free(k;L) so_lambda: λ2x.t[x] implies:  Q prop: real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a less_than: a < b squash: T real-vec-sep: a ≠ b rless: x < y sq_exists: x:A [B[x]] subtype_rel: A ⊆B real: sq_stable: SqStable(P) nat_plus: + nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top uiff: uiff(P;Q) so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf length_wf real-vec_wf real_wf real-vec-sep_wf length_wf_nat int-to-real_wf real-vec-sum_wf subtract_wf real-vec-mul_wf select_wf int_seg_properties sq_stable__less_than real-vec-dist_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt istype-le add-is-int-iff subtract-is-int-iff intformless_wf itermAdd_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_subtract_lemma false_wf istype-less_than list_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality closedConclusion natural_numberEquality hypothesisEquality hypothesis lambdaEquality_alt because_Cache setElimination rename productElimination universeIsType independent_isectElimination imageElimination addEquality applyEquality inhabitedIsType equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality baseClosed dependent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation dependent_set_memberEquality_alt pointwiseFunctionality promote_hyp baseApply productIsType functionIsType axiomEquality isectIsTypeImplies

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[L:\mBbbR{}\^{}k  List].    (real-vec-free(k;L)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-08_45_08
Last ObjectModification: 2019_09_18-PM-01_54_29

Theory : reals


Home Index