Nuprl Lemma : regular-consistency

[x,y:ℝ]. ∀[n,m:ℕ+].  ((m |(x n) n|) ≤ ((n |(x m) m|) (4 n) (4 m)))


Proof




Definitions occuring in Statement :  real: absval: |i| nat_plus: + uall: [x:A]. B[x] le: A ≤ B apply: a multiply: m subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nat_plus: + real: subtype_rel: A ⊆B prop: nat: sq_stable: SqStable(P) squash: T true: True top: Top all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] guard: {T} iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) ge: i ≥  subtract: m regular-int-seq: k-regular-seq(f) sq_type: SQType(T)
Lemmas referenced :  less_than'_wf absval_wf subtract_wf nat_plus_wf real_wf sq_stable__le nat_wf nat_plus_properties decidable__le less_than_wf satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf le_wf squash_wf true_wf add_functionality_wrt_eq absval_sym iff_weakening_equal le_functionality le_weakening add_functionality_wrt_le int-triangle-inequality minus-add minus-minus add-associates minus-one-mul add-commutes add-mul-special add-swap zero-mul zero-add add-zero subtype_base_sq int_subtype_base equal_wf absval_pos nat_plus_subtype_nat absval_mul mul-distributes mul-associates mul-swap mul-distributes-right
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination addEquality multiplyEquality setElimination rename hypothesis applyEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination functionExtensionality independent_functionElimination imageMemberEquality baseClosed imageElimination minusEquality voidEquality dependent_set_memberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality computeAll universeEquality instantiate cumulativity

Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[n,m:\mBbbN{}\msupplus{}].    ((m  *  |(x  n)  -  y  n|)  \mleq{}  ((n  *  |(x  m)  -  y  m|)  +  (4  *  n)  +  (4  *  m)))



Date html generated: 2017_10_02-PM-07_13_47
Last ObjectModification: 2017_07_28-AM-07_20_03

Theory : reals


Home Index