Nuprl Lemma : regular-consistency
∀[x,y:ℝ]. ∀[n,m:ℕ+].  ((m * |(x n) - y n|) ≤ ((n * |(x m) - y m|) + (4 * n) + (4 * m)))
Proof
Definitions occuring in Statement : 
real: ℝ
, 
absval: |i|
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
apply: f a
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat_plus: ℕ+
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
true: True
, 
top: Top
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
subtract: n - m
, 
regular-int-seq: k-regular-seq(f)
, 
sq_type: SQType(T)
Lemmas referenced : 
less_than'_wf, 
absval_wf, 
subtract_wf, 
nat_plus_wf, 
real_wf, 
sq_stable__le, 
nat_wf, 
nat_plus_properties, 
decidable__le, 
less_than_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
absval_sym, 
iff_weakening_equal, 
le_functionality, 
le_weakening, 
add_functionality_wrt_le, 
int-triangle-inequality, 
minus-add, 
minus-minus, 
add-associates, 
minus-one-mul, 
add-commutes, 
add-mul-special, 
add-swap, 
zero-mul, 
zero-add, 
add-zero, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
absval_pos, 
nat_plus_subtype_nat, 
absval_mul, 
mul-distributes, 
mul-associates, 
mul-swap, 
mul-distributes-right
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
addEquality, 
multiplyEquality, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
functionExtensionality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
voidEquality, 
dependent_set_memberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
universeEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[n,m:\mBbbN{}\msupplus{}].    ((m  *  |(x  n)  -  y  n|)  \mleq{}  ((n  *  |(x  m)  -  y  m|)  +  (4  *  n)  +  (4  *  m)))
Date html generated:
2017_10_02-PM-07_13_47
Last ObjectModification:
2017_07_28-AM-07_20_03
Theory : reals
Home
Index