Nuprl Lemma : req-vec-extend

[k:ℕ+]. ∀[a,b:ℝ^k 1]. ∀[z,u:ℝ].  uiff(req-vec(k;a++z;b++u);(z u) ∧ req-vec(k 1;a;b))


Proof




Definitions occuring in Statement :  real-vec-extend: a++z req-vec: req-vec(n;x;y) real-vec: ^n req: y real: nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q subtract: m natural_number: $n
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q lelt: i ≤ j < k top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) nat: not: ¬A false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} real-vec-extend: a++z subtype_rel: A ⊆B prop: nat_plus: + real-vec: ^n all: x:A. B[x] req-vec: req-vec(n;x;y) implies:  Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_seg_properties assert_of_bnot iff_weakening_uiff iff_transitivity bool_cases not_wf bnot_wf assert_wf decidable__lt lelt_wf nat_plus_wf real-vec_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties req_wf real_wf subtype_rel_self less_than_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf real-vec-extend_wf nat_plus_subtype_nat req-vec_wf subtract_wf int_seg_wf req_witness
Rules used in proof :  impliesFunctionality voidEquality isect_memberEquality intEquality int_eqEquality approximateComputation dependent_set_memberEquality productEquality functionEquality voidElimination cumulativity instantiate promote_hyp dependent_pairFormation independent_isectElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination because_Cache lambdaFormation rename setElimination natural_numberEquality applyEquality dependent_functionElimination lambdaEquality hypothesis independent_functionElimination hypothesisEquality isectElimination extract_by_obid independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[a,b:\mBbbR{}\^{}k  -  1].  \mforall{}[z,u:\mBbbR{}].    uiff(req-vec(k;a++z;b++u);(z  =  u)  \mwedge{}  req-vec(k  -  1;a;b))



Date html generated: 2018_07_29-AM-09_44_17
Last ObjectModification: 2018_07_02-PM-00_43_31

Theory : reals


Home Index