Nuprl Lemma : req-vec-extend
∀[k:ℕ+]. ∀[a,b:ℝ^k - 1]. ∀[z,u:ℝ].  uiff(req-vec(k;a++z;b++u);(z = u) ∧ req-vec(k - 1;a;b))
Proof
Definitions occuring in Statement : 
real-vec-extend: a++z
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
req: x = y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
lelt: i ≤ j < k
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
nat: ℕ
, 
not: ¬A
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
int_seg: {i..j-}
, 
real-vec-extend: a++z
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
real-vec: ℝ^n
, 
all: ∀x:A. B[x]
, 
req-vec: req-vec(n;x;y)
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_seg_properties, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
bool_cases, 
not_wf, 
bnot_wf, 
assert_wf, 
decidable__lt, 
lelt_wf, 
nat_plus_wf, 
real-vec_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
req_wf, 
real_wf, 
subtype_rel_self, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
real-vec-extend_wf, 
nat_plus_subtype_nat, 
req-vec_wf, 
subtract_wf, 
int_seg_wf, 
req_witness
Rules used in proof : 
impliesFunctionality, 
voidEquality, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
approximateComputation, 
dependent_set_memberEquality, 
productEquality, 
functionEquality, 
voidElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
because_Cache, 
lambdaFormation, 
rename, 
setElimination, 
natural_numberEquality, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[a,b:\mBbbR{}\^{}k  -  1].  \mforall{}[z,u:\mBbbR{}].    uiff(req-vec(k;a++z;b++u);(z  =  u)  \mwedge{}  req-vec(k  -  1;a;b))
Date html generated:
2018_07_29-AM-09_44_17
Last ObjectModification:
2018_07_02-PM-00_43_31
Theory : reals
Home
Index