Nuprl Lemma : rminimum_lb

[k,n,m:ℤ].  (∀[x:{n..m 1-} ⟶ ℝ]. (rminimum(n;m;i.x[i]) ≤ x[k])) supposing ((k ≤ m) and (n ≤ k))


Proof




Definitions occuring in Statement :  rminimum: rminimum(n;m;k.x[k]) rleq: x ≤ y real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) true: True less_than': less_than'(a;b) subtract: m rev_implies:  Q iff: ⇐⇒ Q squash: T less_than: a < b cand: c∧ B bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) subtype_rel: A ⊆B btrue: tt it: unit: Unit bool: 𝔹 lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] sq_type: SQType(T) ge: i ≥  guard: {T} prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A nat: rminimum: rminimum(n;m;k.x[k]) and: P ∧ Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y implies:  Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtract-add-cancel rleq_functionality_wrt_implies rmin-rleq int_seg_properties primrec_wf rmin_wf subtype_rel_self le-add-cancel add-commutes add-zero zero-add zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add add-associates condition-implies-le not-le-2 istype-false le_reflexive int_seg_subtype subtype_rel_function assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert bnot_wf le_wf le_int_wf assert_of_lt_int eqtt_to_assert less_than_wf assert_wf bool_wf equal-wf-base uiff_transitivity lt_int_wf primrec-unroll decidable__lt rleq_weakening_equal subtract-1-ge-0 primrec0_lemma istype-less_than ge_wf int_formula_prop_less_lemma intformless_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__equal_int nat_properties int_subtype_base subtype_base_sq int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat subtract_wf istype-int istype-le real_wf int_seg_wf le_witness_for_triv decidable__le
Rules used in proof :  multiplyEquality minusEquality imageElimination baseClosed closedConclusion baseApply equalityElimination productIsType applyEquality equalityIstype intWeakElimination rename setElimination applyLambdaEquality intEquality cumulativity instantiate lambdaFormation_alt independent_pairFormation voidElimination int_eqEquality dependent_pairFormation_alt approximateComputation dependent_set_memberEquality_alt isectIsTypeImplies isect_memberEquality_alt natural_numberEquality addEquality universeIsType functionIsType inhabitedIsType functionIsTypeImplies independent_isectElimination equalitySymmetry equalityTransitivity productElimination isectElimination lambdaEquality_alt sqequalRule independent_functionElimination unionElimination hypothesis hypothesisEquality because_Cache dependent_functionElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n,m:\mBbbZ{}].    (\mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].  (rminimum(n;m;i.x[i])  \mleq{}  x[k]))  supposing  ((k  \mleq{}  m)  and  (n  \mleq{}  k))



Date html generated: 2019_11_06-PM-00_30_38
Last ObjectModification: 2019_11_05-PM-05_22_10

Theory : reals


Home Index