Nuprl Lemma : rmul_reverses_rless_iff

x,y,z:ℝ.  ((y < r0)  (x < ⇐⇒ (z y) < (x y)))


Proof




Definitions occuring in Statement :  rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q uimplies: supposing a rneq: x ≠ y or: P ∨ Q rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rless_wf rmul_wf int-to-real_wf real_wf rmul_reverses_rless rdiv_wf rinv-negative rless-implies-rless rinv_wf2 real_term_polynomial itermSubtract_wf itermConstant_wf itermVar_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma req-iff-rsub-is-0 rsub_wf req_wf req_weakening rless_functionality uiff_transitivity req_functionality req_inversion rmul-assoc rmul_functionality rmul_comm req_transitivity rmul-ac rmul-rdiv-cancel rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality independent_functionElimination dependent_functionElimination lemma_by_obid independent_isectElimination inlFormation because_Cache sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination promote_hyp

Latex:
\mforall{}x,y,z:\mBbbR{}.    ((y  <  r0)  {}\mRightarrow{}  (x  <  z  \mLeftarrow{}{}\mRightarrow{}  (z  *  y)  <  (x  *  y)))



Date html generated: 2017_10_03-AM-08_35_08
Last ObjectModification: 2017_07_28-AM-07_28_50

Theory : reals


Home Index