Nuprl Lemma : rpolynomial-linear-factor
∀n:ℕ+. ∀a:ℕn + 1 ⟶ ℝ. ∀z:ℝ.
  ∃b:ℕn ⟶ ℝ. ((∀[x:ℝ]. ((Σi≤n. a_i * x^i) = ((x - z) * (Σi≤n - 1. b_i * x^i)))) ∧ ((b (n - 1)) = (a n))) 
  supposing (Σi≤n. a_i * z^i) = r0
Proof
Definitions occuring in Statement : 
rpolynomial: (Σi≤n. a_i * x^i)
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rpolynomial_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
int-to-real_wf, 
rpolydiv_wf, 
rmul_wf, 
rsub_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_rel_function, 
int_seg_wf, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
subtype_rel_self, 
req_wf, 
decidable__lt, 
istype-less_than, 
itermAdd_wf, 
int_term_value_add_lemma, 
real_wf, 
nat_plus_wf, 
rpolydiv-property, 
radd_wf, 
radd-zero, 
req_functionality, 
req_transitivity, 
radd_functionality, 
req_weakening, 
rpolydiv-rec
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
applyEquality, 
addEquality, 
productElimination, 
inhabitedIsType, 
minusEquality, 
multiplyEquality, 
productIsType, 
isectIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
equalityIstype
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}z:\mBbbR{}.
    \mexists{}b:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}
      ((\mforall{}[x:\mBbbR{}].  ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  ((x  -  z)  *  (\mSigma{}i\mleq{}n  -  1.  b\_i  *  x\^{}i))))  \mwedge{}  ((b  (n  -  1))  =  (a  n))) 
    supposing  (\mSigma{}i\mleq{}n.  a\_i  *  z\^{}i)  =  r0
Date html generated:
2019_10_29-AM-10_16_01
Last ObjectModification:
2019_01_14-PM-10_25_20
Theory : reals
Home
Index