Nuprl Lemma : rpolynomial-linear-factor

n:ℕ+. ∀a:ℕ1 ⟶ ℝ. ∀z:ℝ.
  ∃b:ℕn ⟶ ℝ((∀[x:ℝ]. ((Σi≤n. a_i x^i) ((x z) i≤1. b_i x^i)))) ∧ ((b (n 1)) (a n))) 
  supposing i≤n. a_i z^i) r0


Proof




Definitions occuring in Statement :  rpolynomial: i≤n. a_i x^i) rsub: y req: y rmul: b int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: cand: c∧ B subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True int_seg: {i..j-} lelt: i ≤ j < k rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rpolynomial_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le int-to-real_wf rpolydiv_wf rmul_wf rsub_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_rel_function int_seg_wf int_seg_subtype istype-false not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel subtype_rel_self req_wf decidable__lt istype-less_than itermAdd_wf int_term_value_add_lemma real_wf nat_plus_wf rpolydiv-property radd_wf radd-zero req_functionality req_transitivity radd_functionality req_weakening rpolydiv-rec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt setElimination rename hypothesisEquality hypothesis dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType because_Cache applyEquality addEquality productElimination inhabitedIsType minusEquality multiplyEquality productIsType isectIsType equalityTransitivity equalitySymmetry functionIsType equalityIstype

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}z:\mBbbR{}.
    \mexists{}b:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}
      ((\mforall{}[x:\mBbbR{}].  ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  ((x  -  z)  *  (\mSigma{}i\mleq{}n  -  1.  b\_i  *  x\^{}i))))  \mwedge{}  ((b  (n  -  1))  =  (a  n))) 
    supposing  (\mSigma{}i\mleq{}n.  a\_i  *  z\^{}i)  =  r0



Date html generated: 2019_10_29-AM-10_16_01
Last ObjectModification: 2019_01_14-PM-10_25_20

Theory : reals


Home Index