Nuprl Lemma : rv-sep-between
∀n:ℕ. ∀a,b:ℝ^n.  (a ≠ b ⇒ (∃m:ℝ^n. a-m-b))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c, 
real-vec-sep: a ≠ b, 
real-vec: ℝ^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ, 
rv-between: a-b-c, 
real-vec-between: a-b-c, 
top: Top, 
cand: A c∧ B, 
nat_plus: ℕ+, 
rsub: x - y, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q)
Lemmas referenced : 
real-vec-add_wf, 
real-vec-mul_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
member_rooint_lemma, 
rless-int-fractions2, 
less_than_wf, 
rless-int-fractions3, 
req-vec_wf, 
rsub_wf, 
rv-between_wf, 
real-vec-sep_wf, 
real-vec_wf, 
nat_wf, 
radd-int, 
rminus-int, 
real_wf, 
true_wf, 
squash_wf, 
uiff_transitivity3, 
rmul-rdiv-cancel, 
rmul_comm, 
rminus_functionality, 
rmul-one-both, 
rmul_over_rminus, 
radd_functionality, 
rmul-distrib, 
req_transitivity, 
rmul-rdiv-cancel2, 
req_functionality, 
uiff_transitivity, 
req_weakening, 
rminus_wf, 
radd_wf, 
rmul_wf, 
req_wf, 
rmul_preserves_req, 
real-vec-mul_functionality, 
real-vec-add_functionality, 
req-vec_weakening, 
req-vec_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
multiplyEquality, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
addEquality, 
minusEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  (\mexists{}m:\mBbbR{}\^{}n.  a-m-b))
Date html generated:
2017_10_03-AM-11_14_28
Last ObjectModification:
2017_07_28-AM-08_24_39
Theory : reals
Home
Index