Nuprl Lemma : seq-max-lower-le
∀[k:ℕ]. ∀[n:ℕ+]. ∀[f:ℕ+ ⟶ ℤ]. (seq-max-lower(k;n;f) ≤ n)
Proof
Definitions occuring in Statement :
seq-max-lower: seq-max-lower(k;n;f)
,
nat_plus: ℕ+
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
function: x:A ⟶ B[x]
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
seq-max-lower: seq-max-lower(k;n;f)
,
all: ∀x:A. B[x]
,
top: Top
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
and: P ∧ Q
,
prop: ℙ
,
nat: ℕ
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
le: A ≤ B
,
false: False
,
not: ¬A
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nequal: a ≠ b ∈ T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
Lemmas referenced :
primrec1_lemma,
le_int_wf,
subtract_wf,
nat_plus_wf,
less_than_wf,
bool_wf,
eqtt_to_assert,
assert_of_le_int,
false_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
le_wf,
nat_plus_properties,
seq-max-lower_wf,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
primrec-wf-nat-plus,
less_than'_wf,
nat_wf,
primrec-unroll,
squash_wf,
true_wf,
eq_int_eq_false,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
equal-wf-base,
int_subtype_base,
bfalse_wf,
iff_weakening_equal,
add-subtract-cancel,
decidable__lt,
not-lt-2,
less-iff-le,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-associates,
minus-minus,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
le_reflexive,
add-is-int-iff,
and_wf,
le_weakening2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
isectElimination,
multiplyEquality,
natural_numberEquality,
applyEquality,
functionExtensionality,
hypothesisEquality,
dependent_set_memberEquality,
independent_pairFormation,
imageMemberEquality,
baseClosed,
setElimination,
rename,
because_Cache,
lambdaFormation,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
dependent_pairFormation,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
instantiate,
cumulativity,
independent_functionElimination,
approximateComputation,
lambdaEquality,
int_eqEquality,
intEquality,
independent_pairEquality,
axiomEquality,
functionEquality,
addEquality,
imageElimination,
universeEquality,
baseApply,
closedConclusion,
minusEquality,
hyp_replacement,
applyLambdaEquality
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[n:\mBbbN{}\msupplus{}]. \mforall{}[f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}]. (seq-max-lower(k;n;f) \mleq{} n)
Date html generated:
2017_10_03-AM-08_44_07
Last ObjectModification:
2017_09_12-PM-00_27_40
Theory : reals
Home
Index