Nuprl Lemma : ratLegendre_wf
∀[x:ℤ × ℕ+]. ∀[n:ℕ].  (ratLegendre(n;x) ∈ {y:ℤ × ℕ+| ratreal(y) = Legendre(n;ratreal(x))} )
Proof
Definitions occuring in Statement : 
ratLegendre: ratLegendre(n;x), 
Legendre: Legendre(n;x), 
ratreal: ratreal(r), 
req: x = y, 
nat_plus: ℕ+, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False, 
ratLegendre: ratLegendre(n;x), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
le: A ≤ B, 
less_than': less_than'(a;b), 
int_upper: {i...}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
rneq: x ≠ y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
true: True, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
req_wf, 
ratreal_wf, 
int-to-real_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
istype-false, 
nequal-le-implies, 
zero-add, 
istype-le, 
ratLegendre-aux_wf, 
int_upper_properties, 
intformand_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
decidable__le, 
itermAdd_wf, 
int_term_value_add_lemma, 
Legendre_1_lemma, 
req_weakening, 
Legendre_0_lemma, 
Legendre_wf, 
int_seg_subtype_nat, 
subtract_wf, 
int_seg_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-nat, 
nat_plus_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
req-int-fractions2, 
int_subtype_base, 
nequal_wf, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
req_functionality, 
ratreal-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
independent_pairEquality, 
natural_numberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
because_Cache, 
hypothesis_subsumption, 
independent_pairFormation, 
int_eqEquality, 
dependent_pairEquality_alt, 
addEquality, 
productIsType, 
setIsType, 
applyEquality, 
axiomEquality, 
isectIsTypeImplies, 
closedConclusion, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
intEquality, 
sqequalBase
Latex:
\mforall{}[x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].    (ratLegendre(n;x)  \mmember{}  \{y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(y)  =  Legendre(n;ratreal(x))\}  )
Date html generated:
2019_10_30-AM-11_34_13
Last ObjectModification:
2019_01_10-PM-04_04_28
Theory : reals_2
Home
Index