Nuprl Lemma : MMTree-induction

[T:Type]. ∀[P:MMTree(T) ⟶ ℙ].
  ((∀val:T. P[MMTree_Leaf(val)])
   (∀forest:MMTree(T) List List. ((∀u∈forest.(∀u1∈u.P[u1]))  P[MMTree_Node(forest)]))
   {∀v:MMTree(T). P[v]})


Proof




Definitions occuring in Statement :  MMTree_Node: MMTree_Node(forest) MMTree_Leaf: MMTree_Leaf(val) MMTree: MMTree(T) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat: prop: so_apply: x[s] all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  MMTree_Leaf: MMTree_Leaf(val) MMTree_size: MMTree_size(p) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b MMTree_Node: MMTree_Node(forest) int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T cand: c∧ B l_all: (∀x∈L.P[x])
Lemmas referenced :  MMTree_Leaf_wf MMTree_Node_wf l_member_wf l_all_wf2 uall_wf lelt_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf sum-nat-le sum-nat-less int_term_value_add_lemma itermAdd_wf length_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties select_wf list_wf length_wf_nat sum-nat neg_assert_of_eq_atom assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert atom_subtype_base subtype_base_sq assert_of_eq_atom eqtt_to_assert bool_wf eq_atom_wf MMTree-ext less_than'_wf nat_wf MMTree_size_wf le_wf isect_wf MMTree_wf all_wf uniform-comp-nat-induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesisEquality hypothesis applyEquality because_Cache setElimination rename independent_functionElimination introduction productElimination independent_pairEquality dependent_functionElimination voidElimination axiomEquality equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption tokenEquality unionElimination equalityElimination independent_isectElimination instantiate cumulativity atomEquality dependent_pairFormation natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll imageElimination setEquality dependent_set_memberEquality equalityEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:MMTree(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:T.  P[MMTree\_Leaf(val)])
    {}\mRightarrow{}  (\mforall{}forest:MMTree(T)  List  List.  ((\mforall{}u\mmember{}forest.(\mforall{}u1\mmember{}u.P[u1]))  {}\mRightarrow{}  P[MMTree\_Node(forest)]))
    {}\mRightarrow{}  \{\mforall{}v:MMTree(T).  P[v]\})



Date html generated: 2016_05_16-AM-08_55_33
Last ObjectModification: 2016_01_17-AM-09_42_49

Theory : C-semantics


Home Index