Nuprl Lemma : RankEx2_ListProd_wf
∀[S,T:Type]. ∀[listprod:(S × RankEx2(S;T)) List]. (RankEx2_ListProd(listprod) ∈ RankEx2(S;T))
Proof
Definitions occuring in Statement :
RankEx2_ListProd: RankEx2_ListProd(listprod)
,
RankEx2: RankEx2(S;T)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
RankEx2: RankEx2(S;T)
,
RankEx2_ListProd: RankEx2_ListProd(listprod)
,
subtype_rel: A ⊆r B
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
ext-eq: A ≡ B
,
RankEx2co_size: RankEx2co_size(p)
,
RankEx2_size: RankEx2_size(p)
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
not: ¬A
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
less_than: a < b
,
squash: ↓T
Lemmas referenced :
RankEx2co_size_wf,
has-value_wf-partial,
int-value-type,
set-value-type,
value-type-has-value,
nat_wf,
int_seg_wf,
pi2_wf,
int_formula_prop_less_lemma,
intformless_wf,
decidable__lt,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
length_wf,
int_seg_properties,
select_wf,
RankEx2_size_wf,
length_wf_nat,
sum-nat,
le_wf,
false_wf,
add_nat_wf,
list_wf,
assert_of_eq_atom,
eqtt_to_assert,
neg_assert_of_eq_atom,
assert-bnot,
bool_subtype_base,
subtype_base_sq,
bool_cases_sqequal,
equal_wf,
eqff_to_assert,
bool_wf,
eq_atom_wf,
subtype_rel_product,
RankEx2co_wf,
RankEx2_wf,
subtype_rel_list,
RankEx2co-ext
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
dependent_set_memberEquality,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
dependent_pairEquality,
tokenEquality,
applyEquality,
productEquality,
independent_isectElimination,
lambdaEquality,
because_Cache,
lambdaFormation,
setElimination,
rename,
unionElimination,
equalityElimination,
productElimination,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
unionEquality,
voidEquality,
equalityEquality,
natural_numberEquality,
independent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
computeAll,
imageElimination,
universeEquality
Latex:
\mforall{}[S,T:Type]. \mforall{}[listprod:(S \mtimes{} RankEx2(S;T)) List]. (RankEx2\_ListProd(listprod) \mmember{} RankEx2(S;T))
Date html generated:
2016_05_16-AM-09_00_23
Last ObjectModification:
2016_01_17-AM-09_41_19
Theory : C-semantics
Home
Index