Nuprl Lemma : int-seg-case-monotone
∀[i,j:ℤ]. ∀[F,G:{i..j-} ⟶ ℙ]. ∀[d:∀k:{i..j-}. (F[k] ∨ G[k])].
  ∀k:{i..j + 1-}. ((↑isl(int-seg-case(i;k;d))) 
⇒ (∀k':{k..j + 1-}. (↑isl(int-seg-case(i;k';d)))))
Proof
Definitions occuring in Statement : 
int-seg-case: int-seg-case(i;j;d)
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
isl: isl(x)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
exposed-it: exposed-it
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
label: ...$L... t
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
bfalse: ff
, 
int-seg-case: int-seg-case(i;j;d)
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
ge: i ≥ j 
, 
nat: ℕ
, 
bool: 𝔹
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
isl: isl(x)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtract: n - m
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
less_than: a < b
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
assert_of_le_int, 
true_wf, 
squash_wf, 
eqff_to_assert, 
uiff_transitivity2, 
assert_of_lt_int, 
eqtt_to_assert, 
uiff_transitivity, 
bnot_wf, 
le_int_wf, 
assert_wf, 
bool_wf, 
equal-wf-base, 
lt_int_wf, 
subtype_base_sq, 
primrec-unroll, 
mul-associates, 
mul-distributes, 
omega-shadow, 
mul-distributes-right, 
two-mul, 
one-mul, 
le_reflexive, 
le_weakening2, 
istype-top, 
zero-mul, 
add-mul-special, 
not-le-2, 
decidable__le, 
sq_stable__le, 
subtract_nat_wf, 
subtract_wf, 
istype-nat, 
subtract-1-ge-0, 
int_subtype_base, 
set_subtype_base, 
add-is-int-iff, 
add-zero, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
istype-true, 
bfalse_wf, 
btrue_wf, 
subtype_rel_self, 
less_than_wf, 
le_wf, 
and_wf, 
subtype_rel_sets_simple, 
or_wf, 
subtype_rel_dep_function, 
istype-less_than, 
istype-le, 
le-add-cancel2, 
add-commutes, 
add_functionality_wrt_le, 
zero-add, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
istype-void, 
add-associates, 
condition-implies-le, 
less-iff-le, 
not-lt-2, 
istype-false, 
decidable__lt, 
int-seg-case_wf, 
istype-assert, 
int_seg_wf
Rules used in proof : 
equalityElimination, 
cumulativity, 
instantiate, 
multiplyEquality, 
axiomSqEquality, 
lessCases, 
imageMemberEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
intWeakElimination, 
universeEquality, 
isectIsTypeImplies, 
functionIsTypeImplies, 
axiomEquality, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
unionIsType, 
functionIsType, 
inhabitedIsType, 
intEquality, 
unionEquality, 
productIsType, 
minusEquality, 
isect_memberEquality_alt, 
natural_numberEquality, 
addEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
applyEquality, 
lambdaEquality_alt, 
sqequalRule, 
because_Cache, 
imageElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
universeIsType, 
lambdaFormation_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[F,G:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:\mforall{}k:\{i..j\msupminus{}\}.  (F[k]  \mvee{}  G[k])].
    \mforall{}k:\{i..j  +  1\msupminus{}\}.  ((\muparrow{}isl(int-seg-case(i;k;d)))  {}\mRightarrow{}  (\mforall{}k':\{k..j  +  1\msupminus{}\}.  (\muparrow{}isl(int-seg-case(i;k';d)))))
Date html generated:
2019_10_15-AM-10_19_56
Last ObjectModification:
2019_10_02-PM-11_11_31
Theory : call!by!value_2
Home
Index