Nuprl Lemma : W-wfdd
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])].  coW-wfdd(a.B[a];w)
Proof
Definitions occuring in Statement : 
coW-wfdd: coW-wfdd(a.B[a];w), 
W: W(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
isr: isr(x), 
pcw-pp-barred: Barred(pp), 
pcw-partial: pcw-partial(path;n), 
eq_int: (i =z j), 
coPath-at: coPath-at(n;w;p), 
copath-at: copath-at(w;p), 
copath-length: copath-length(p), 
copath: copath(a.B[a];w), 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
coW-item: coW-item(w;b), 
cand: A c∧ B, 
pcw-step-agree: StepAgree(s;p1;w), 
spreadn: spread3, 
pcw-steprel: StepRel(s1;s2), 
ext-eq: A ≡ B, 
pi1: fst(t), 
coW-dom: coW-dom(a.B[a];w), 
pi2: snd(t), 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
exists: ∃x:A. B[x], 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
band: p ∧b q, 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
exposed-bfalse: exposed-bfalse, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]), 
pcw-path: Path, 
true: True, 
less_than': less_than'(a;b), 
le: A ≤ B, 
top: Top, 
subtract: n - m, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
false: False, 
rev_implies: P ⇐ Q, 
not: ¬A, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
nat: ℕ, 
prop: ℙ, 
squash: ↓T, 
all: ∀x:A. B[x], 
coW-wfdd: coW-wfdd(a.B[a];w), 
coW: coW(A;a.B[a]), 
param-W: pW, 
W: W(A;a.B[a]), 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
not_wf, 
iff_wf, 
assert_of_band, 
iff_weakening_uiff, 
assert_wf, 
iff_transitivity, 
member_wf, 
btrue_wf, 
band_wf, 
iff_imp_equal_bool, 
subtract-add-cancel, 
minus-minus, 
less-iff-le, 
subtract_wf, 
int_subtype_base, 
equal-wf-T-base, 
pcw-steprel_wf, 
subtype_rel-equal, 
coW-item_wf, 
iff_weakening_equal, 
subtype_rel_self, 
subtype_rel_weakening, 
coW-ext, 
unit_wf2, 
copathAgree-last, 
le-add-cancel2, 
not-equal-2, 
pi1_wf, 
true_wf, 
squash_wf, 
coW-dom_wf, 
coW_wf, 
le_antisymmetry_iff, 
not-lt-2, 
decidable__lt, 
copath-last_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
copath-at_wf, 
it_wf, 
decidable__int_equal, 
W_wf, 
copathAgree_wf, 
le_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
false_wf, 
decidable__le, 
copath-length_wf, 
equal_wf, 
all_wf, 
copath_wf, 
nat_wf, 
set_wf, 
W-subtype-coW, 
sq_stable__coW-wfdd
Rules used in proof : 
impliesFunctionality, 
addLevel, 
unionEquality, 
inrEquality, 
hypothesis_subsumption, 
applyLambdaEquality, 
hyp_replacement, 
productEquality, 
inlEquality, 
promote_hyp, 
dependent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
dependent_pairEquality, 
universeEquality, 
instantiate, 
minusEquality, 
voidEquality, 
isect_memberEquality, 
independent_isectElimination, 
productElimination, 
voidElimination, 
independent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
dependent_set_memberEquality, 
intEquality, 
because_Cache, 
functionExtensionality, 
cumulativity, 
functionEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
lambdaFormation, 
rename, 
setElimination, 
independent_functionElimination, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].    coW-wfdd(a.B[a];w)
Date html generated:
2018_07_25-PM-01_42_13
Last ObjectModification:
2018_07_24-PM-00_02_46
Theory : co-recursion
Home
Index