Nuprl Lemma : enum-fin-seq-true

m:ℕ((λx.tt) enum-fin-seq(m)[0] ∈ (ℕ ⟶ 𝔹))


Proof




Definitions occuring in Statement :  enum-fin-seq: enum-fin-seq(m) select: L[n] nat: btrue: tt bool: 𝔹 all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: enum-fin-seq: enum-fin-seq(m) select: L[n] cons: [a b] decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b squash: T nequal: a ≠ b ∈  int_seg: {i..j-} true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q list_n: List(n) lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) nat_plus: + less_than: a < b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma btrue_wf nat_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int squash_wf true_wf select_append_front map_wf primrec_wf list_wf le_wf cons_wf nil_wf append_wf bfalse_wf int_seg_wf iff_weakening_equal length-map enum-fin-seq_wf list_n_wf exp_wf2 false_wf list_n_properties exp-positive-stronger lelt_wf length_wf select-map subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination because_Cache promote_hyp instantiate cumulativity applyEquality imageElimination universeEquality functionEquality functionExtensionality dependent_set_memberEquality imageMemberEquality baseClosed int_eqReduceTrueSq int_eqReduceFalseSq

Latex:
\mforall{}m:\mBbbN{}.  ((\mlambda{}x.tt)  =  enum-fin-seq(m)[0])



Date html generated: 2017_04_20-AM-07_22_41
Last ObjectModification: 2017_02_27-PM-05_59_09

Theory : continuity


Home Index