Nuprl Lemma : monotone-bar-induction8-2

Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s]))  (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. Q[m;f]))  ⇃(Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_upper: {i...} int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B uimplies: supposing a sq_stable: SqStable(P) squash: T int_upper: {i...} le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] prop: int_seg: {i..j-} lelt: i ≤ j < k guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] ge: i ≥  decidable: Dec(P) or: P ∨ Q ext2Baire: ext2Baire(n;f;d) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q true: True cand: c∧ B outl: outl(x) isl: isl(x)
Lemmas referenced :  strong-continuity-rel all_wf int_upper_wf nat_wf upper_subtype_nat sq_stable__le subtype_rel_function int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self implies-quotient-true exists_wf unit_wf2 equal-wf-T-base subtype_rel_union set_subtype_base lelt_wf istype-int int_subtype_base assert_wf isl_wf le_wf int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf quotient_wf true_wf equiv_rel_true nat_properties decidable__equal_int intformnot_wf intformeq_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le seq-add_wf basic_bar_induction decidable__assert seq-adjoin_wf ext2Baire_wf squash_wf bool_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff less_than_wf iff_imp_equal_bool btrue_wf bfalse_wf btrue_neq_bfalse decidable__lt equal-wf-base-T seq-adjoin-is-seq-add iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :lambdaEquality_alt,  isectElimination setElimination because_Cache hypothesis sqequalRule applyEquality functionExtensionality hypothesisEquality independent_isectElimination natural_numberEquality independent_functionElimination imageMemberEquality baseClosed imageElimination independent_pairFormation Error :universeIsType,  Error :functionIsType,  Error :inhabitedIsType,  functionEquality unionEquality productEquality productElimination baseApply closedConclusion intEquality Error :unionIsType,  Error :dependent_set_memberEquality_alt,  approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :productIsType,  Error :equalityIsType3,  instantiate universeEquality addEquality unionElimination equalityTransitivity equalitySymmetry hyp_replacement Error :functionExtensionality_alt,  equalityElimination Error :equalityIsType2,  promote_hyp cumulativity Error :equalityIsType1,  applyLambdaEquality Error :equalityIsType4,  Error :inrEquality_alt

Latex:
\mforall{}Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]))
    {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  Q[m;f]))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2019_06_20-PM-02_56_49
Last ObjectModification: 2018_10_04-PM-11_40_03

Theory : continuity


Home Index