Nuprl Lemma : strong-continuity-test-bound-prop1

[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕn?)]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[b:ℕn].
  ((↑isl(strong-continuity-test-bound(M;n;f;b)))  (strong-continuity-test-bound(M;n;f;b) (inl b) ∈ (ℕn?)))


Proof




Definitions occuring in Statement :  strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b) int_seg: {i..j-} nat: assert: b isl: isl(x) uall: [x:A]. B[x] implies:  Q unit: Unit function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt isl: isl(x) assert: b bfalse: ff sq_type: SQType(T) uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q exposed-it: exposed-it bool: 𝔹 unit: Unit it: bnot: ¬bb nequal: a ≠ b ∈  less_than: a < b squash: T true: True
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_wf isl_wf int_seg_wf unit_wf2 strong-continuity-test-bound_wf nat_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_wf strong-continuity-test-bound-unroll subtype_rel_dep_function subtype_rel_union int_seg_subtype_nat false_wf eq_int_wf bnot_wf not_wf equal-wf-base int_subtype_base lt_int_wf equal-wf-base-T bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot assert_of_lt_int intformeq_wf int_formula_prop_eq_lemma equal_wf bool_cases_sqequal assert-bnot neg_assert_of_eq_int int_seg_subtype decidable__lt lelt_wf iff_weakening_equal
Rules used in proof :  cut thin introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality productElimination cumulativity functionExtensionality applyEquality because_Cache functionEquality unionElimination dependent_set_memberEquality unionEquality universeEquality isect_memberFormation equalityTransitivity equalitySymmetry baseClosed baseApply closedConclusion instantiate impliesFunctionality equalityElimination promote_hyp inlEquality imageElimination imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}n?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[b:\mBbbN{}n].
    ((\muparrow{}isl(strong-continuity-test-bound(M;n;f;b)))
    {}\mRightarrow{}  (strong-continuity-test-bound(M;n;f;b)  =  (inl  b)))



Date html generated: 2017_04_17-AM-10_00_44
Last ObjectModification: 2017_02_27-PM-05_53_24

Theory : continuity


Home Index