Nuprl Lemma : weak-continuity-implies-strong1
(∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ.  ((f = g ∈ (ℕM f ⟶ ℕ)) 
⇒ ((F f) = (F g) ∈ ℕ))))
⇒ (∀F:(ℕ ⟶ ℕ) ⟶ ℕ
      ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
         ∀f:ℕ ⟶ ℕ
           ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
ext2Baire: ext2Baire(n;f;d)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
isl: isl(x)
, 
true: True
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
Lemmas referenced : 
nat_wf, 
all_wf, 
quotient_wf, 
exists_wf, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
true_wf, 
equiv_rel_true, 
implies-prop-truncation, 
unit_wf2, 
isect_wf, 
assert_wf, 
isl_wf, 
le_int_wf, 
ext2Baire_wf, 
le_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
imax_wf, 
imax_nat, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lt_int_wf, 
assert_of_lt_int, 
less_than_wf, 
int_seg_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
imax_strict_ub, 
set_subtype_base, 
int_subtype_base, 
imax_ub, 
decidable__equal_int, 
prop-truncation-quot, 
quotient-member-eq, 
equal-wf-base, 
member_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
rename, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
functionEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
setElimination, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
comment, 
unionEquality, 
productEquality, 
inlEquality, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
inrEquality, 
axiomEquality, 
applyLambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
imageElimination, 
inlFormation, 
inrFormation, 
isect_memberFormation, 
pointwiseFunctionality, 
pertypeElimination, 
imageMemberEquality, 
baseClosed
Latex:
(\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))))
{}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
            \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
                  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                      ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))))
Date html generated:
2017_04_17-AM-09_59_59
Last ObjectModification:
2017_02_27-PM-05_55_15
Theory : continuity
Home
Index