Nuprl Lemma : weak-continuity-implies-strong1

(∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ.  ((f g ∈ (ℕf ⟶ ℕ))  ((F f) (F g) ∈ ℕ))))
 (∀F:(ℕ ⟶ ℕ) ⟶ ℕ
      ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
         ∀f:ℕ ⟶ ℕ
           ((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f)))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] exposed-it: exposed-it bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top ext2Baire: ext2Baire(n;f;d) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q isl: isl(x) true: True cand: c∧ B quotient: x,y:A//B[x; y]
Lemmas referenced :  nat_wf all_wf quotient_wf exists_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self true_wf equiv_rel_true implies-prop-truncation unit_wf2 isect_wf assert_wf isl_wf le_int_wf ext2Baire_wf le_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot imax_wf imax_nat nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf lt_int_wf assert_of_lt_int less_than_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma imax_strict_ub set_subtype_base int_subtype_base imax_ub decidable__equal_int prop-truncation-quot quotient-member-eq equal-wf-base member_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation rename cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality functionEquality introduction extract_by_obid isectElimination sqequalRule lambdaEquality because_Cache natural_numberEquality applyEquality functionExtensionality setElimination independent_isectElimination independent_pairFormation productElimination comment unionEquality productEquality inlEquality independent_functionElimination dependent_pairFormation dependent_set_memberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity voidElimination inrEquality axiomEquality applyLambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll imageElimination inlFormation inrFormation isect_memberFormation pointwiseFunctionality pertypeElimination imageMemberEquality baseClosed

Latex:
(\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))))
{}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
            \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
                  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                      ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))))



Date html generated: 2017_04_17-AM-09_59_59
Last ObjectModification: 2017_02_27-PM-05_55_15

Theory : continuity


Home Index