Nuprl Lemma : length-list-diff
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs:T List.  ((||as-bs|| ≤ ||as||) ∧ ||as-bs|| < ||as|| supposing (∃a∈as. (a ∈ bs)))
Proof
Definitions occuring in Statement : 
list-diff: as-bs, 
l_exists: (∃x∈L. P[x]), 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
deq: EqDecider(T), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
universe: Type
Definitions unfolded in proof : 
list-diff: as-bs, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
l_member: (x ∈ l), 
l_exists: (∃x∈L. P[x]), 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
less_than: a < b, 
squash: ↓T, 
rev_implies: P ⇐ Q
Lemmas referenced : 
length-filter, 
bnot_wf, 
deq-member_wf, 
l_exists_wf, 
l_member_wf, 
list_wf, 
deq_wf, 
less_than'_wf, 
length_wf, 
filter_wf5, 
member-less_than, 
length-filter-decreases, 
l_exists_iff, 
lelt_wf, 
not_wf, 
assert_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
false_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert-deq-member
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_pairFormation, 
setElimination, 
rename, 
setEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
voidElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
independent_isectElimination, 
universeEquality, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
natural_numberEquality, 
unionElimination, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
imageElimination, 
functionEquality, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:T  List.
        ((||as-bs||  \mleq{}  ||as||)  \mwedge{}  ||as-bs||  <  ||as||  supposing  (\mexists{}a\mmember{}as.  (a  \mmember{}  bs)))
 Date html generated: 
2016_10_21-AM-10_42_47
 Last ObjectModification: 
2016_07_12-AM-05_50_28
Theory : decidable!equality
Home
Index