Nuprl Lemma : mapfilter-no-rep-fun

[T,U,V:Type]. ∀[eq:EqDecider(U)]. ∀[L:T List]. ∀[u:U]. ∀[f:T ⟶ U]. ∀[g:{x:{x:T| (x ∈ L)} | ↑(eq f[x] u)}  ⟶ V].
  ||mapfilter(g;λx.(eq f[x] u);L)|| ≤ supposing no_repeats(U;map(f;L))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| map: map(f;as) list: List deq: EqDecider(T) assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T deq: EqDecider(T) so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] and: P ∧ Q uimplies: supposing a all: x:A. B[x] implies:  Q cand: c∧ B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B mapfilter: mapfilter(f;P;L) true: True squash: T guard: {T} iff: ⇐⇒ Q eqof: eqof(d) uiff: uiff(P;Q) less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b l_before: before y ∈ l sublist: L1 ⊆ L2 select: L[n] cons: [a b] subtract: m no_repeats: no_repeats(T;l) ge: i ≥  nat: increasing: increasing(f;k)
Lemmas referenced :  length_wf mapfilter-wf subtype_rel_dep_function l_member_wf assert_wf subtype_rel_sets set_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf less_than'_wf no_repeats_wf map_wf list_wf deq_wf length-map filter_wf5 filter_is_sublist sublist_wf equal_wf squash_wf true_wf iff_weakening_equal member_filter_2 safe-assert-deq select_wf false_wf decidable__lt intformless_wf int_formula_prop_less_lemma select_member lelt_wf l_before_sublist l_before_select le_wf length_of_cons_lemma length_of_nil_lemma int_seg_wf map-length non_neg_length length_wf_nat nat_properties int_seg_properties nat_wf subtype_rel_list top_wf select-map intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality because_Cache lambdaEquality applyEquality setElimination rename hypothesis functionExtensionality cumulativity sqequalRule setEquality productEquality independent_isectElimination lambdaFormation productElimination dependent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionEquality universeEquality isect_memberFormation independent_pairEquality axiomEquality imageElimination imageMemberEquality baseClosed independent_functionElimination dependent_set_memberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T,U,V:Type].  \mforall{}[eq:EqDecider(U)].  \mforall{}[L:T  List].  \mforall{}[u:U].  \mforall{}[f:T  {}\mrightarrow{}  U].  \mforall{}[g:\{x:\{x:T|  (x  \mmember{}  L)\}  | 
                                                                                                                                                    \muparrow{}(eq  f[x]  u)\}    {}\mrightarrow{}  V].
    ||mapfilter(g;\mlambda{}x.(eq  f[x]  u);L)||  \mleq{}  1  supposing  no\_repeats(U;map(f;L))



Date html generated: 2017_09_29-PM-06_04_32
Last ObjectModification: 2017_07_26-PM-02_53_05

Theory : decidable!equality


Home Index