Nuprl Lemma : finite-quotient-bound

A:Type. ∀R:A ⟶ A ⟶ ℙ. ∀n:ℕ.
  (A ~ ℕ EquivRel(A;x,y.x y)  (∀x,y:A.  Dec(x y))  (∃m:ℕ((m ≤ n) ∧ x,y:A//(x y) ~ ℕm)))


Proof




Definitions occuring in Statement :  equipollent: B equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: decidable: Dec(P) prop: infix_ap: y le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T finite: finite(T) exists: x:A. B[x] uall: [x:A]. B[x] nat: and: P ∧ Q cand: c∧ B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a infix_ap: y guard: {T} equipollent: B subtype_rel: A ⊆B preima_of_rel: R_f int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top le: A ≤ B less_than': less_than'(a;b) sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) pi1: fst(t) quotient: x,y:A//B[x; y] inject: Inj(A;B;f) biject: Bij(A;B;f)
Lemmas referenced :  finite-quotient equipollent_wf int_seg_wf le_wf quotient_wf infix_ap_wf decidable_wf equiv_rel_wf nat_wf equipollent_inversion biject-quotient preima_of_equiv_rel quo-lift_wf biject_wf preima_of_rel_wf equipollent_transitivity pigeon-hole int_seg_properties nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf less_than_wf subtract_wf subtype_rel_self not_wf subtype_rel_function int_seg_subtype false_wf sq_stable__le le_weakening2 primrec-wf2 all_wf exists_wf decidable__exists_int_seg decidable__lt intformnot_wf int_formula_prop_not_lemma lelt_wf itermSubtract_wf int_term_value_subtract_lemma subtype_rel_dep_function decidable__le itermAdd_wf int_term_value_add_lemma equal-wf-base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma inject_wf quotient-member-eq compose_wf injection-composition
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination Error :dependent_pairFormation_alt,  hypothesis Error :universeIsType,  isectElimination natural_numberEquality setElimination rename productElimination independent_pairFormation sqequalRule Error :productIsType,  because_Cache cumulativity Error :lambdaEquality_alt,  instantiate universeEquality functionExtensionality applyEquality Error :inhabitedIsType,  independent_isectElimination Error :functionIsType,  equalityTransitivity equalitySymmetry Error :equalityIsType1,  approximateComputation int_eqEquality Error :isect_memberEquality_alt,  voidElimination imageMemberEquality baseClosed imageElimination Error :setIsType,  functionEquality productEquality Error :dependent_set_memberEquality_alt,  unionElimination addEquality promote_hyp applyLambdaEquality pointwiseFunctionalityForEquality pertypeElimination hyp_replacement

Latex:
\mforall{}A:Type.  \mforall{}R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}n:\mBbbN{}.
    (A  \msim{}  \mBbbN{}n
    {}\mRightarrow{}  EquivRel(A;x,y.x  R  y)
    {}\mRightarrow{}  (\mforall{}x,y:A.    Dec(x  R  y))
    {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  ((m  \mleq{}  n)  \mwedge{}  x,y:A//(x  R  y)  \msim{}  \mBbbN{}m)))



Date html generated: 2019_06_20-PM-02_19_08
Last ObjectModification: 2018_09_30-PM-02_47_40

Theory : equipollence!!cardinality!


Home Index