Nuprl Lemma : nwkl!-iff-twkl!-bool

nWKL! ⇐⇒ WKL!(𝔹)


Proof




Definitions occuring in Statement :  nwkl!: nWKL! twkl!: WKL!(T) bool: 𝔹 iff: ⇐⇒ Q
Definitions unfolded in proof :  twkl!: WKL!(T) nwkl!: nWKL! eff-unique: eff-unique(A) eff-unique-path: eff-unique-path(T;A) dec-predicate: Decidable(X) iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] member: t ∈ T exists: x:A. B[x] sq_exists: x:{A| B[x]} prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T infinite-tree: infinite-tree(A) nat: down-closed: down-closed(T;X) R-closed: R-closed(T;x.X[x];a,b.R[a; b]) guard: {T} unbounded-list-predicate: Unbounded(A) cand: c∧ B is-path: is-path(A;f) uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  is-path_wf bool_wf nat_wf eff-unique-path_wf dec-predicate_wf list_wf set_wf down-closed_wf unbounded-list-predicate_wf all_wf infinite-tree_wf exists_wf sq_exists_wf sq_stable__and iseg_wf equal_wf length_wf sq_stable__all sq_stable_from_decidable decidable__exists_length_bool map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self upto_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule independent_pairFormation lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache independent_functionElimination productElimination dependent_set_memberFormation hypothesisEquality introduction extract_by_obid isectElimination functionExtensionality applyEquality instantiate functionEquality cumulativity universeEquality lambdaEquality productEquality dependent_pairFormation setEquality imageMemberEquality baseClosed imageElimination isect_memberEquality intEquality dependent_set_memberEquality natural_numberEquality independent_isectElimination

Latex:
nWKL!  \mLeftarrow{}{}\mRightarrow{}  WKL!(\mBbbB{})



Date html generated: 2017_04_17-AM-09_39_08
Last ObjectModification: 2017_02_27-PM-05_35_17

Theory : fan-theorem


Home Index