Nuprl Lemma : polyconst-val

[n:ℕ]. ∀[l:{l:ℤ List| ||l|| n ∈ ℤ]. ∀[k:ℤ].  (l@polyconst(n;k) k)


Proof




Definitions occuring in Statement :  polyconst: polyconst(n;k) poly-int-val: l@p length: ||as|| list: List nat: uall: [x:A]. B[x] set: {x:A| B[x]}  int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} so_apply: x[s] polyconst: polyconst(n;k) or: P ∨ Q cons: [a b] decidable: Dec(P) le: A ≤ B poly-int-val: l@p ifthenelse: if then else fi  btrue: tt squash: T true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff sum: Σ(f[x] x < k) subtract: m sum_aux: sum_aux(k;v;i;x.f[x]) select: L[n] has-value: (a)↓ uiff: uiff(P;Q)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf set_wf list_wf equal-wf-base less_than_transitivity1 less_than_irreflexivity list-cases product_subtype_list length_of_cons_lemma le_weakening2 length_wf non_neg_length decidable__lt intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma length_of_nil_lemma int_subtype_base equal-wf-base-T list_subtype_base nat_wf null_nil_lemma decidable__equal_int subtype_base_sq poly_int_val_nil_cons equal_wf iff_weakening_equal poly_int_val_cons_cons null_cons_lemma spread_cons_lemma value-type-has-value int-value-type polyform_wf le_wf polyform-value-type polyconst_wf exp0_lemma add-is-int-iff false_wf itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom baseApply closedConclusion baseClosed applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry int_eqReduceTrueSq int_eqReduceFalseSq instantiate cumulativity imageElimination imageMemberEquality dependent_set_memberEquality callbyvalueReduce sqleReflexivity pointwiseFunctionality addEquality multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[k:\mBbbZ{}].    (l@polyconst(n;k)  \msim{}  k)



Date html generated: 2017_09_29-PM-06_00_25
Last ObjectModification: 2017_04_26-PM-02_04_56

Theory : integer!polynomials


Home Index