Nuprl Lemma : polyconst-val
∀[n:ℕ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[k:ℤ].  (l@polyconst(n;k) ~ k)
Proof
Definitions occuring in Statement : 
polyconst: polyconst(n;k)
, 
poly-int-val: l@p
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_apply: x[s]
, 
polyconst: polyconst(n;k)
, 
or: P ∨ Q
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
poly-int-val: l@p
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bfalse: ff
, 
sum: Σ(f[x] | x < k)
, 
subtract: n - m
, 
sum_aux: sum_aux(k;v;i;x.f[x])
, 
select: L[n]
, 
has-value: (a)↓
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
set_wf, 
list_wf, 
equal-wf-base, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
product_subtype_list, 
length_of_cons_lemma, 
le_weakening2, 
length_wf, 
non_neg_length, 
decidable__lt, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
length_of_nil_lemma, 
int_subtype_base, 
equal-wf-base-T, 
list_subtype_base, 
nat_wf, 
null_nil_lemma, 
decidable__equal_int, 
subtype_base_sq, 
poly_int_val_nil_cons, 
equal_wf, 
iff_weakening_equal, 
poly_int_val_cons_cons, 
null_cons_lemma, 
spread_cons_lemma, 
value-type-has-value, 
int-value-type, 
polyform_wf, 
le_wf, 
polyform-value-type, 
polyconst_wf, 
exp0_lemma, 
add-is-int-iff, 
false_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
instantiate, 
cumulativity, 
imageElimination, 
imageMemberEquality, 
dependent_set_memberEquality, 
callbyvalueReduce, 
sqleReflexivity, 
pointwiseFunctionality, 
addEquality, 
multiplyEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[k:\mBbbZ{}].    (l@polyconst(n;k)  \msim{}  k)
Date html generated:
2017_09_29-PM-06_00_25
Last ObjectModification:
2017_04_26-PM-02_04_56
Theory : integer!polynomials
Home
Index