Nuprl Lemma : polyvar_wf

[n:ℕ]. ∀[v:ℤ].  polyvar(n;v) ∈ polyform(n) supposing 0 < n


Proof




Definitions occuring in Statement :  polyvar: polyvar(n;v) polyform: polyform(n) nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: less_than: a < b squash: T less_than': less_than'(a;b) polyform: polyform(n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b polyvar: polyvar(n;v) has-value: (a)↓ true: True nequal: a ≠ b ∈  decidable: Dec(P) rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf subtract-1-ge-0 eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int value-type-has-value int-value-type subtract_wf lt_int_wf assert_of_lt_int istype-top nil_wf polyform_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_wf iff_weakening_uiff assert_wf cons_wf polyconst_wf nat_wf decidable__lt polyform-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  imageElimination productElimination because_Cache unionElimination equalityElimination Error :equalityIsType2,  baseApply closedConclusion baseClosed applyEquality promote_hyp instantiate cumulativity callbyvalueReduce intEquality lessCases axiomSqEquality imageMemberEquality Error :dependent_set_memberEquality_alt,  int_eqReduceTrueSq int_eqReduceFalseSq Error :equalityIsType1

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[v:\mBbbZ{}].    polyvar(n;v)  \mmember{}  polyform(n)  supposing  0  <  n



Date html generated: 2019_06_20-PM-01_54_07
Last ObjectModification: 2018_10_07-AM-00_29_37

Theory : integer!polynomials


Home Index