Nuprl Lemma : last-insert

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[x:T].  (last(insert(x;L)) if null(L) then else last(L) fi  ∈ T)


Proof




Definitions occuring in Statement :  insert: insert(a;L) last: last(L) null: null(as) list: List deq: EqDecider(T) ifthenelse: if then else fi  uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q top: Top ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b bfalse: ff last: last(L) select: L[n] length: ||as|| list_ind: list_ind insert: insert(a;L) deq: EqDecider(T) bool: 𝔹 unit: Unit exists: x:A. B[x] bnot: ¬bb assert: b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list list-cases insert_nil_lemma null_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base null_cons_lemma list_wf deq_wf eval_list_sq cons_wf subtype_rel_list top_wf deq_member_cons_lemma bor_wf deq-member_wf bool_wf eqtt_to_assert assert-deq-member last_wf assert_elim null_wf member-implies-null-eq-bfalse btrue_neq_bfalse assert_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot l_member_wf squash_wf true_wf last_cons bfalse_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality because_Cache cumulativity applyEquality unionElimination voidEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality equalityTransitivity equalitySymmetry intEquality instantiate universeEquality equalityElimination addLevel levelHypothesis dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].
    (last(insert(x;L))  =  if  null(L)  then  x  else  last(L)  fi  )



Date html generated: 2017_04_14-AM-08_54_05
Last ObjectModification: 2017_02_27-PM-03_39_10

Theory : list_0


Home Index