Nuprl Lemma : sort-int-trivial
∀T:Type. ∀bs:T List.  ((T ⊆r ℤ) ⇒ sorted(bs) ⇒ (sort-int(bs) = bs ∈ (T List)))
Proof
Definitions occuring in Statement : 
sort-int: sort-int(as), 
sorted: sorted(L), 
list: T List, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sort-int: sort-int(as), 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uimplies: b supposing a, 
so_apply: x[s], 
merge-int: merge-int(as;bs), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
subtype_rel: A ⊆r B, 
top: Top, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
or: P ∨ Q, 
cons: [a / b], 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
true: True, 
select: L[n]
Lemmas referenced : 
list_induction, 
subtype_rel_wf, 
sorted_wf, 
equal_wf, 
list_wf, 
merge-int_wf, 
nil_wf, 
reduce_cons_lemma, 
sorted-cons, 
length_wf_nat, 
nat_wf, 
insert-int_wf, 
cons_wf, 
list-cases, 
insert_int_nil_lemma, 
product_subtype_list, 
insert-int-cons, 
subtype_rel_list, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
length_of_cons_lemma, 
false_wf, 
add_nat_plus, 
nat_plus_wf, 
lelt_wf, 
length_wf, 
less_than_transitivity1, 
less_than_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
cumulativity, 
intEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
voidEquality, 
voidElimination, 
because_Cache, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
productElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
universeEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
applyEquality, 
equalityElimination, 
dependent_pairFormation, 
instantiate, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
addEquality
Latex:
\mforall{}T:Type.  \mforall{}bs:T  List.    ((T  \msubseteq{}r  \mBbbZ{})  {}\mRightarrow{}  sorted(bs)  {}\mRightarrow{}  (sort-int(bs)  =  bs))
Date html generated:
2017_09_29-PM-05_49_52
Last ObjectModification:
2017_07_26-PM-01_38_55
Theory : list_0
Home
Index