Nuprl Lemma : cycle-conjugate
∀[n:ℕ]. ∀[L:ℕn List].
  ∀[f,g:ℕn ⟶ ℕn].
    ((g o (cycle(L) o f)) = cycle(map(g;L)) ∈ (ℕn ⟶ ℕn)) supposing 
       ((∀a:ℕn. ((f (g a)) = a ∈ ℕn)) and 
       (∀a:ℕn. ((g (f a)) = a ∈ ℕn))) 
  supposing no_repeats(ℕn;L)
Proof
Definitions occuring in Statement : 
cycle: cycle(L)
, 
no_repeats: no_repeats(T;l)
, 
map: map(f;as)
, 
list: T List
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
compose: f o g
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
top: Top
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
not: ¬A
, 
no_repeats: no_repeats(T;l)
, 
le: A ≤ B
Lemmas referenced : 
int_seg_wf, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
no_repeats_wf, 
list_wf, 
nat_wf, 
decidable__l_member, 
decidable__equal_int_seg, 
subtype_base_sq, 
select-map, 
istype-void, 
subtype_rel_list, 
top_wf, 
le_wf, 
less_than_wf, 
length_wf, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
map_wf, 
map-length, 
eqtt_to_assert, 
assert_of_eq_int, 
map_select, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
apply-cycle-member, 
not_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
nat_properties, 
select_wf, 
length-map, 
apply-cycle-non-member, 
l_member_wf, 
member_map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :functionExtensionality_alt, 
sqequalRule, 
Error :universeIsType, 
because_Cache, 
hypothesis, 
Error :functionIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
Error :equalityIsType3, 
Error :inhabitedIsType, 
applyEquality, 
intEquality, 
Error :lambdaEquality_alt, 
independent_isectElimination, 
Error :isect_memberEquality_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
unionElimination, 
productElimination, 
instantiate, 
cumulativity, 
voidElimination, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
Error :productIsType, 
imageElimination, 
universeEquality, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType1, 
promote_hyp, 
addEquality, 
computeAll, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
applyLambdaEquality, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
isect_memberFormation, 
dependent_set_memberEquality, 
levelHypothesis, 
equalityUniverse
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:\mBbbN{}n  List].
    \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n].
        ((g  o  (cycle(L)  o  f))  =  cycle(map(g;L)))  supposing 
              ((\mforall{}a:\mBbbN{}n.  ((f  (g  a))  =  a))  and 
              (\mforall{}a:\mBbbN{}n.  ((g  (f  a))  =  a))) 
    supposing  no\_repeats(\mBbbN{}n;L)
Date html generated:
2019_06_20-PM-01_40_07
Last ObjectModification:
2018_10_04-PM-02_28_48
Theory : list_1
Home
Index