Nuprl Lemma : cycle-conjugate

[n:ℕ]. ∀[L:ℕList].
  ∀[f,g:ℕn ⟶ ℕn].
    ((g (cycle(L) f)) cycle(map(g;L)) ∈ (ℕn ⟶ ℕn)) supposing 
       ((∀a:ℕn. ((f (g a)) a ∈ ℕn)) and 
       (∀a:ℕn. ((g (f a)) a ∈ ℕn))) 
  supposing no_repeats(ℕn;L)


Proof




Definitions occuring in Statement :  cycle: cycle(L) no_repeats: no_repeats(T;l) map: map(f;as) list: List compose: g int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a compose: g all: x:A. B[x] nat: subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q decidable: Dec(P) or: P ∨ Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B sq_type: SQType(T) guard: {T} top: Top lelt: i ≤ j < k and: P ∧ Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b false: False satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  not: ¬A no_repeats: no_repeats(T;l) le: A ≤ B
Lemmas referenced :  int_seg_wf set_subtype_base lelt_wf istype-int int_subtype_base no_repeats_wf list_wf nat_wf decidable__l_member decidable__equal_int_seg subtype_base_sq select-map istype-void subtype_rel_list top_wf le_wf less_than_wf length_wf equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal map_wf map-length eqtt_to_assert assert_of_eq_int map_select eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int apply-cycle-member not_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties nat_properties select_wf length-map apply-cycle-non-member l_member_wf member_map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :functionExtensionality_alt,  sqequalRule Error :universeIsType,  because_Cache hypothesis Error :functionIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality Error :equalityIsType3,  Error :inhabitedIsType,  applyEquality intEquality Error :lambdaEquality_alt,  independent_isectElimination Error :isect_memberEquality_alt,  axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination Error :lambdaFormation_alt,  unionElimination productElimination instantiate cumulativity voidElimination Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :productIsType,  imageElimination universeEquality functionExtensionality imageMemberEquality baseClosed equalityElimination Error :dependent_pairFormation_alt,  Error :equalityIsType1,  promote_hyp addEquality computeAll int_eqEquality lambdaEquality dependent_pairFormation applyLambdaEquality lambdaFormation voidEquality isect_memberEquality isect_memberFormation dependent_set_memberEquality levelHypothesis equalityUniverse

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:\mBbbN{}n  List].
    \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n].
        ((g  o  (cycle(L)  o  f))  =  cycle(map(g;L)))  supposing 
              ((\mforall{}a:\mBbbN{}n.  ((f  (g  a))  =  a))  and 
              (\mforall{}a:\mBbbN{}n.  ((g  (f  a))  =  a))) 
    supposing  no\_repeats(\mBbbN{}n;L)



Date html generated: 2019_06_20-PM-01_40_07
Last ObjectModification: 2018_10_04-PM-02_28_48

Theory : list_1


Home Index