Nuprl Lemma : apply-cycle-non-member
∀[n:ℕ]. ∀[L:ℕn List]. ∀[x:ℕn].  (cycle(L) x) = x ∈ ℕn supposing ¬(x ∈ L)
Proof
Definitions occuring in Statement : 
cycle: cycle(L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cycle: cycle(L)
, 
let: let, 
prop: ℙ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
guard: {T}
, 
int_seg: {i..j-}
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
listp: A List+
, 
so_lambda: λ2x.t[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
squash: ↓T
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
not_wf, 
l_member_wf, 
int_seg_wf, 
list_wf, 
nat_wf, 
null_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_null, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
hd_wf, 
listp_properties, 
list-cases, 
length_of_nil_lemma, 
nil_wf, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf_nat, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
length_wf, 
list_induction, 
list_ind_wf, 
eq_int_wf, 
assert_of_eq_int, 
null_nil_lemma, 
null_cons_lemma, 
cons_wf, 
length_cons_ge_one, 
subtype_rel_list, 
top_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
cons_member, 
or_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
voidEquality, 
addEquality, 
applyEquality, 
lambdaEquality, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
functionEquality, 
addLevel, 
levelHypothesis, 
impliesLevelFunctionality, 
imageElimination, 
universeEquality, 
inrFormation, 
imageMemberEquality, 
inlFormation, 
dependent_pairFormation, 
int_eqEquality, 
computeAll
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:\mBbbN{}n  List].  \mforall{}[x:\mBbbN{}n].    (cycle(L)  x)  =  x  supposing  \mneg{}(x  \mmember{}  L)
Date html generated:
2017_04_17-AM-08_17_59
Last ObjectModification:
2017_02_27-PM-04_42_04
Theory : list_1
Home
Index