Nuprl Lemma : apply-cycle-non-member

[n:ℕ]. ∀[L:ℕList]. ∀[x:ℕn].  (cycle(L) x) x ∈ ℕsupposing ¬(x ∈ L)


Proof




Definitions occuring in Statement :  cycle: cycle(L) l_member: (x ∈ l) list: List int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cycle: cycle(L) let: let prop: nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q or: P ∨ Q false: False cons: [a b] top: Top guard: {T} int_seg: {i..j-} le: A ≤ B decidable: Dec(P) lelt: i ≤ j < k subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True listp: List+ so_lambda: λ2x.t[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_apply: x[s] squash: T ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  not_wf l_member_wf int_seg_wf list_wf nat_wf null_wf bool_wf equal-wf-T-base assert_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_null iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf hd_wf listp_properties list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma length_wf_nat decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf length_wf list_induction list_ind_wf eq_int_wf assert_of_eq_int null_nil_lemma null_cons_lemma cons_wf length_cons_ge_one subtype_rel_list top_wf list_ind_nil_lemma list_ind_cons_lemma cons_member or_wf squash_wf true_wf iff_weakening_equal int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma intformless_wf int_formula_prop_less_lemma lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry baseClosed lambdaFormation unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination independent_pairFormation impliesFunctionality dependent_functionElimination voidElimination promote_hyp hypothesis_subsumption voidEquality addEquality applyEquality lambdaEquality intEquality minusEquality dependent_set_memberEquality functionEquality addLevel levelHypothesis impliesLevelFunctionality imageElimination universeEquality inrFormation imageMemberEquality inlFormation dependent_pairFormation int_eqEquality computeAll

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:\mBbbN{}n  List].  \mforall{}[x:\mBbbN{}n].    (cycle(L)  x)  =  x  supposing  \mneg{}(x  \mmember{}  L)



Date html generated: 2017_04_17-AM-08_17_59
Last ObjectModification: 2017_02_27-PM-04_42_04

Theory : list_1


Home Index