Nuprl Lemma : decidable__list-match-ext
∀[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ((∀a:A. ∀b:B.  Dec(R[a;b])) 
⇒ (∀as:A List. ∀bs:B List.  Dec(list-match(as;bs;a,b.R[a;b]))))
Proof
Definitions occuring in Statement : 
list-match: list-match(L1;L2;a,b.R[a; b])
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
eq_int: (i =z j)
, 
btrue: tt
, 
it: ⋅
, 
bfalse: ff
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
spreadn: spread4, 
decidable__list-match, 
decidable_functionality, 
decidable__list-match-aux, 
iff_preserves_decidability, 
list_induction, 
list_match-aux-nil, 
list_match-aux-cons, 
sq_stable_from_decidable, 
decidable__exists_int_seg, 
decidable__and2, 
decidable__not, 
decidable__assert, 
decidable__implies, 
decidable__false, 
decidable__and, 
any: any x
, 
sq_stable__and, 
sq_stable__all, 
sq_stable__not, 
sq_stable__from_stable, 
stable__from_decidable, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
decidable__list-match, 
lifting-strict-callbyvalue, 
strict4-decide, 
lifting-strict-decide, 
lifting-strict-int_eq, 
decidable_functionality, 
decidable__list-match-aux, 
iff_preserves_decidability, 
list_induction, 
list_match-aux-nil, 
list_match-aux-cons, 
sq_stable_from_decidable, 
decidable__exists_int_seg, 
decidable__and2, 
decidable__not, 
decidable__assert, 
decidable__implies, 
decidable__false, 
decidable__and, 
sq_stable__and, 
sq_stable__all, 
sq_stable__not, 
sq_stable__from_stable, 
stable__from_decidable
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}b:B.    Dec(R[a;b]))  {}\mRightarrow{}  (\mforall{}as:A  List.  \mforall{}bs:B  List.    Dec(list-match(as;bs;a,b.R[a;b]))))
Date html generated:
2018_05_21-PM-00_48_33
Last ObjectModification:
2018_05_19-AM-06_51_13
Theory : list_1
Home
Index