Nuprl Lemma : double-lsum-swap

[T,S:Type]. ∀[K:T List]. ∀[L:S List]. ∀[f:T ⟶ S ⟶ ℤ].
  (f[t;s] s ∈ L) t ∈ K) = Σ(f[t;s] t ∈ K) s ∈ L) ∈ ℤ)


Proof




Definitions occuring in Statement :  lsum: Σ(f[x] x ∈ L) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases lsum_nil_lemma list_wf equal_wf squash_wf true_wf lsum-0 subtype_rel_self iff_weakening_equal product_subtype_list colength-cons-not-zero colength_wf_list istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf lsum_cons_lemma istype-nat istype-universe lsum_wf l_member_wf add_functionality_wrt_eq lsum-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination functionIsType because_Cache equalityTransitivity equalitySymmetry applyEquality imageElimination intEquality imageMemberEquality baseClosed instantiate productElimination promote_hyp hypothesis_subsumption equalityIstype dependent_set_memberEquality_alt applyLambdaEquality baseApply closedConclusion sqequalBase universeEquality addEquality setIsType

Latex:
\mforall{}[T,S:Type].  \mforall{}[K:T  List].  \mforall{}[L:S  List].  \mforall{}[f:T  {}\mrightarrow{}  S  {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(\mSigma{}(f[t;s]  |  s  \mmember{}  L)  |  t  \mmember{}  K)  =  \mSigma{}(\mSigma{}(f[t;s]  |  t  \mmember{}  K)  |  s  \mmember{}  L))



Date html generated: 2020_05_19-PM-09_48_02
Last ObjectModification: 2019_11_12-PM-11_50_13

Theory : list_1


Home Index