Nuprl Lemma : l_before_map

[A,B:Type].
  ∀l:A List. ∀f:A ⟶ B. ∀x,y:B.
    (x before y ∈ map(f;l) ⇐⇒ ∃u,v:A. ((x (f u) ∈ B) ∧ (y (f v) ∈ B) ∧ before v ∈ l))


Proof




Definitions occuring in Statement :  l_before: before y ∈ l map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q prop: exists: x:A. B[x] top: Top member: t ∈ T sublist: L1 ⊆ L2 l_before: before y ∈ l implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] uall: [x:A]. B[x] sq_type: SQType(T) cand: c∧ B nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) guard: {T} uimplies: supposing a subtype_rel: A ⊆B subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-}
Lemmas referenced :  list_wf equal_wf exists_wf map_wf l_before_wf length_of_nil_lemma length_of_cons_lemma int_term_value_add_lemma itermAdd_wf nil_wf cons_wf all_wf increasing_wf int_seg_cases int_subtype_base subtype_base_sq decidable__equal_int int_formula_prop_eq_lemma int_formula_prop_less_lemma intformeq_wf intformless_wf decidable__lt int_term_value_constant_lemma int_formula_prop_and_lemma itermConstant_wf intformand_wf nat_properties length_wf_nat map_length non_neg_length select_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le int_seg_properties iff_weakening_equal map_length_nat le_wf length_wf int_seg_subtype int_seg_wf top_wf subtype_rel_list select-map lelt_wf false_wf istype-false full-omega-unsat istype-int istype-void istype-le istype-less_than int_seg_subtype_special map-length squash_wf true_wf istype-universe subtype_rel_self
Rules used in proof :  universeEquality functionEquality productEquality lambdaEquality applyEquality functionExtensionality hypothesisEquality cumulativity isectElimination productElimination hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination extract_by_obid introduction cut sqequalRule sqequalHypSubstitution independent_pairFormation lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution addEquality hypothesis_subsumption instantiate computeAll intEquality int_eqEquality dependent_pairFormation unionElimination rename setElimination applyLambdaEquality independent_functionElimination equalitySymmetry equalityTransitivity imageElimination independent_isectElimination because_Cache baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality Error :dependent_pairFormation_alt,  Error :lambdaFormation_alt,  approximateComputation Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  closedConclusion Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  Error :productIsType,  Error :functionIsType,  Error :equalityIstype

Latex:
\mforall{}[A,B:Type].
    \mforall{}l:A  List.  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}x,y:B.
        (x  before  y  \mmember{}  map(f;l)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}u,v:A.  ((x  =  (f  u))  \mwedge{}  (y  =  (f  v))  \mwedge{}  u  before  v  \mmember{}  l))



Date html generated: 2019_06_20-PM-01_25_44
Last ObjectModification: 2019_01_01-AM-09_13_53

Theory : list_1


Home Index