Nuprl Lemma : last_induction_accum

[T:Type]. ∀[Q:(T List) ⟶ ℙ].  (Q[[]]  (∀[ys:T List]. (Q[ys]  (∀y:T. Q[ys [y]])))  {∀zs:T List. Q[zs]})


Proof




Definitions occuring in Statement :  append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q int_iseg: {i...j} cand: c∧ B
Lemmas referenced :  list_wf uall_wf all_wf append_wf cons_wf nil_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf length_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma non_neg_length decidable__lt lelt_wf decidable__assert null_wf list-cases list_accum_nil_lemma product_subtype_list null_cons_lemma last-lemma-sq pos_length iff_transitivity not_wf equal-wf-T-base assert_wf bnot_wf assert_of_null iff_weakening_uiff assert_of_bnot firstn_wf length_firstn itermAdd_wf int_term_value_add_lemma nat_wf length_wf_nat list_accum_append subtype_rel_list top_wf list_accum_cons_lemma last_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality applyEquality functionExtensionality universeEquality setElimination intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache productElimination unionElimination applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality imageElimination promote_hyp baseClosed impliesFunctionality productEquality addEquality isectEquality

Latex:
\mforall{}[T:Type].  \mforall{}[Q:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    (Q[[]]  {}\mRightarrow{}  (\mforall{}[ys:T  List].  (Q[ys]  {}\mRightarrow{}  (\mforall{}y:T.  Q[ys  @  [y]])))  {}\mRightarrow{}  \{\mforall{}zs:T  List.  Q[zs]\})



Date html generated: 2017_04_17-AM-07_33_25
Last ObjectModification: 2017_02_27-PM-04_11_10

Theory : list_1


Home Index