Nuprl Lemma : last_induction_accum
∀[T:Type]. ∀[Q:(T List) ⟶ ℙ].  (Q[[]] 
⇒ (∀[ys:T List]. (Q[ys] 
⇒ (∀y:T. Q[ys @ [y]]))) 
⇒ {∀zs:T List. Q[zs]})
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cons: [a / b]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
int_iseg: {i...j}
, 
cand: A c∧ B
Lemmas referenced : 
list_wf, 
uall_wf, 
all_wf, 
append_wf, 
cons_wf, 
nil_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
length_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
non_neg_length, 
decidable__lt, 
lelt_wf, 
decidable__assert, 
null_wf, 
list-cases, 
list_accum_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
last-lemma-sq, 
pos_length, 
iff_transitivity, 
not_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
assert_of_null, 
iff_weakening_uiff, 
assert_of_bnot, 
firstn_wf, 
length_firstn, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
length_wf_nat, 
list_accum_append, 
subtype_rel_list, 
top_wf, 
list_accum_cons_lemma, 
last_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
productElimination, 
unionElimination, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
imageElimination, 
promote_hyp, 
baseClosed, 
impliesFunctionality, 
productEquality, 
addEquality, 
isectEquality
Latex:
\mforall{}[T:Type].  \mforall{}[Q:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    (Q[[]]  {}\mRightarrow{}  (\mforall{}[ys:T  List].  (Q[ys]  {}\mRightarrow{}  (\mforall{}y:T.  Q[ys  @  [y]])))  {}\mRightarrow{}  \{\mforall{}zs:T  List.  Q[zs]\})
Date html generated:
2017_04_17-AM-07_33_25
Last ObjectModification:
2017_02_27-PM-04_11_10
Theory : list_1
Home
Index