Nuprl Lemma : monotone-upper-bound-function
∀f:ℕ ⟶ ℤ. ∃g:ℕ ⟶ ℤ. ((∀i,j:ℕ.  ((i ≤ j) 
⇒ ((g i) ≤ (g j)))) ∧ (∀n:ℕ. ((f n) ≤ (g n))))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
cand: A c∧ B
, 
l_subset: l_subset(T;as;bs)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
member_upto, 
member_map, 
l_exists_iff, 
imax-list-ub, 
upto_iseg, 
int_seg_subtype, 
subtype_rel_list, 
iseg-map, 
l_member_wf, 
iseg_member, 
imax-list-subset, 
all_wf, 
and_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
length_upto, 
map-length, 
upto_wf, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat, 
nat_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
map_wf, 
imax-list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
intEquality, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
int_eqEquality, 
computeAll, 
functionEquality, 
introduction, 
independent_functionElimination, 
productElimination, 
setEquality, 
productEquality
Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.  ((\mforall{}i,j:\mBbbN{}.    ((i  \mleq{}  j)  {}\mRightarrow{}  ((g  i)  \mleq{}  (g  j))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  ((f  n)  \mleq{}  (g  n))))
Date html generated:
2016_05_14-PM-03_19_04
Last ObjectModification:
2016_01_15-AM-07_17_10
Theory : list_1
Home
Index