Nuprl Lemma : monotone-upper-bound-function

f:ℕ ⟶ ℤ. ∃g:ℕ ⟶ ℤ((∀i,j:ℕ.  ((i ≤ j)  ((g i) ≤ (g j)))) ∧ (∀n:ℕ((f n) ≤ (g n))))


Proof




Definitions occuring in Statement :  nat: le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) cand: c∧ B l_subset: l_subset(T;as;bs) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf member_upto member_map l_exists_iff imax-list-ub upto_iseg int_seg_subtype subtype_rel_list iseg-map l_member_wf iseg_member imax-list-subset all_wf and_wf int_formula_prop_less_lemma intformless_wf decidable__lt le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties length_upto map-length upto_wf subtype_rel_self false_wf int_seg_subtype_nat nat_wf subtype_rel_dep_function int_seg_wf map_wf imax-list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation lambdaEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis intEquality applyEquality sqequalRule independent_isectElimination independent_pairFormation because_Cache isect_memberEquality voidElimination voidEquality dependent_set_memberEquality dependent_functionElimination unionElimination int_eqEquality computeAll functionEquality introduction independent_functionElimination productElimination setEquality productEquality

Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}.  ((\mforall{}i,j:\mBbbN{}.    ((i  \mleq{}  j)  {}\mRightarrow{}  ((g  i)  \mleq{}  (g  j))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  ((f  n)  \mleq{}  (g  n))))



Date html generated: 2016_05_14-PM-03_19_04
Last ObjectModification: 2016_01_15-AM-07_17_10

Theory : list_1


Home Index