Nuprl Lemma : exp_functionality_wrt_assoced

n:ℕ. ∀x,y:ℤ.  ((x y)  (x^n y^n))


Proof




Definitions occuring in Statement :  assoced: b exp: i^n nat: all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q so_apply: x[s] exp: i^n bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  all_wf assoced_wf exp_wf2 decidable__le subtract_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf less_than_wf primrec-wf2 nat_wf exp0_lemma assoced_weakening lt_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_lt_int le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf primrec-unroll assoced_functionality_wrt_assoced multiply_functionality_wrt_assoced
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality because_Cache functionEquality hypothesisEquality hypothesis dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation equalityElimination baseApply closedConclusion baseClosed applyEquality equalityTransitivity equalitySymmetry productElimination multiplyEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbZ{}.    ((x  \msim{}  y)  {}\mRightarrow{}  (x\^{}n  \msim{}  y\^{}n))



Date html generated: 2018_05_21-PM-01_10_37
Last ObjectModification: 2018_05_19-AM-06_39_30

Theory : num_thy_1


Home Index