Nuprl Lemma : fact-non-decreasing

[m,n:ℕ].  ((n ≤ m)  ((n)! ≤ (m)!))


Proof




Definitions occuring in Statement :  fact: (n)! nat: uall: [x:A]. B[x] le: A ≤ B implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  lt_int: i <j subtract: m less_than': less_than'(a;b) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b decidable: Dec(P) nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf fact_wf le_wf nat_wf fact_unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot intformnot_wf int_formula_prop_not_lemma decidable__le subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_plus_wf fact_unroll_1 nat_plus_properties mul_preserves_le multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation productElimination independent_pairEquality applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry unionElimination equalityElimination promote_hyp instantiate cumulativity dependent_set_memberEquality applyLambdaEquality multiplyEquality pointwiseFunctionality baseApply closedConclusion baseClosed

Latex:
\mforall{}[m,n:\mBbbN{}].    ((n  \mleq{}  m)  {}\mRightarrow{}  ((n)!  \mleq{}  (m)!))



Date html generated: 2018_05_21-PM-01_01_25
Last ObjectModification: 2018_05_19-AM-06_39_19

Theory : num_thy_1


Home Index