Nuprl Lemma : locally-ranked-is-well-founded
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Trans(T;x,y.R[y;x])
  
⇒ (∀k:ℕ. ∀rank:T ⟶ ℕ. ∀l:T ⟶ ℕk.
        ((∀x,y:T.  (((l x) = (l y) ∈ ℤ) 
⇒ R[x;y] 
⇒ rank x < rank y)) 
⇒ tcWO(T;x,y.R[y;x]))))
Proof
Definitions occuring in Statement : 
trans: Trans(T;x,y.E[x; y])
, 
tcWO: tcWO(T;x,y.>[x; y])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
tcWO: tcWO(T;x,y.>[x; y])
, 
and: P ∧ Q
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
, 
trans: Trans(T;x,y.E[x; y])
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
subtract: n - m
, 
top: Top
, 
true: True
, 
ge: i ≥ j 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
cand: A c∧ B
Lemmas referenced : 
istype-int, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
subtype_rel_self, 
istype-less_than, 
istype-nat, 
int_seg_wf, 
trans_wf, 
istype-universe, 
Dickson's lemma, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
add_nat_wf, 
istype-false, 
istype-le, 
sq_stable__le, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_seg_subtype_nat, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
istype-assert, 
istype-void, 
istype-sqequal, 
add-is-int-iff, 
le_wf, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
subtract_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
int_seg_properties, 
nat_properties, 
add-swap, 
less-iff-le, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :universeIsType, 
cut, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
thin, 
because_Cache, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
Error :functionIsType, 
Error :equalityIstype, 
extract_by_obid, 
isectElimination, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
sqequalBase, 
equalitySymmetry, 
instantiate, 
universeEquality, 
Error :inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
equalityTransitivity, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
cumulativity, 
voidElimination, 
applyLambdaEquality, 
Error :isect_memberEquality_alt, 
minusEquality, 
baseApply, 
closedConclusion, 
Error :productIsType
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;x,y.R[y;x])
    {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \mforall{}rank:T  {}\mrightarrow{}  \mBbbN{}.  \mforall{}l:T  {}\mrightarrow{}  \mBbbN{}k.
                ((\mforall{}x,y:T.    (((l  x)  =  (l  y))  {}\mRightarrow{}  R[x;y]  {}\mRightarrow{}  rank  x  <  rank  y))  {}\mRightarrow{}  tcWO(T;x,y.R[y;x]))))
Date html generated:
2019_06_20-PM-00_30_10
Last ObjectModification:
2019_01_04-AM-11_46_07
Theory : rel_1
Home
Index