Nuprl Lemma : strong-subtype-bag

[A,B:Type].  strong-subtype(bag(A);bag(B)) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  bag: bag(T) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-subtype: strong-subtype(A;B) cand: c∧ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: implies:  Q all: x:A. B[x] bag-member: x ↓∈ bs squash: T and: P ∧ Q sq_stable: SqStable(P) bag: bag(T) quotient: x,y:A//B[x; y] guard: {T} iff: ⇐⇒ Q l_member: (x ∈ l) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  subtype_rel_bag bag_wf exists_wf equal_wf strong-subtype_witness strong-subtype_wf bag-subtype bag-member_wf bag_to_squash_list sq_stable__all l_member_wf list-subtype-bag squash_wf sq_stable__squash member-permutation member_wf list_wf subtype_rel_list permutation_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf strong-subtype-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination independent_pairFormation lambdaEquality setEquality cumulativity sqequalRule applyEquality because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination setElimination rename imageElimination functionEquality lambdaFormation imageMemberEquality baseClosed promote_hyp hyp_replacement applyLambdaEquality pertypeElimination productEquality dependent_pairFormation natural_numberEquality unionElimination int_eqEquality intEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[A,B:Type].    strong-subtype(bag(A);bag(B))  supposing  strong-subtype(A;B)



Date html generated: 2017_10_01-AM-08_56_47
Last ObjectModification: 2017_07_26-PM-04_39_03

Theory : bags


Home Index