Nuprl Lemma : KozenSilva-corollary0

[r:CRng]. ∀[x,y:Atom].
  ∀[d:ℕ ⟶ ℕ]. ∀[k:ℕ].
    (Moessner(r;x;y;1;λi.if (i =z 0) then else (i 1) fi ;k)
    = Π(i∈upto(k)).((((k i) ⋅1)*atom(x)+atom(y)))^(d i)
    ∈ PowerSeries(r)) 
  supposing ¬(x y ∈ Atom)


Proof




Definitions occuring in Statement :  Moessner: Moessner(r;x;y;h;d;k) fps-exp: (f)^(n) fps-scalar-mul: (c)*f fps-product: Π(x∈b).f[x] fps-add: (f+g) fps-atom: atom(x) fps-one: 1 power-series: PowerSeries(X;r) upto: upto(n) atom-deq: AtomDeq nat: ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n atom: Atom equal: t ∈ T rng_nat_op: n ⋅e crng: CRng rng_one: 1
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b ge: i ≥  int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top eq_int: (i =z j) subtract: m squash: T true: True subtype_rel: A ⊆B so_lambda: λ2x.t[x] crng: CRng int_seg: {i..j-} lelt: i ≤ j < k rng: Rng so_apply: x[s] nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  KozenSilva-theorem fps-one_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int false_wf le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat nat_properties nequal-le-implies zero-add nat_wf subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf squash_wf true_wf power-series_wf not_wf equal-wf-base atom_subtype_base crng_wf upto_wf list-subtype-bag int_seg_wf subtype_rel_self bag_wf fps-product_wf atom-valueall-type atom-deq_wf fps-exp_wf fps-add_wf fps-scalar-mul_wf rng_nat_op_wf int_seg_properties intformless_wf int_formula_prop_less_lemma rng_one_wf fps-atom_wf int_seg_subtype_nat fps-mul_wf intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma add-subtract-cancel fps-one-slice fps-compose_wf valueall-type_wf deq_wf iff_weakening_equal fps-compose-one mul_one_fps add-associates add-swap add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis atomEquality lambdaEquality setElimination rename because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination sqequalRule productElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry independent_pairFormation dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination hypothesis_subsumption applyEquality functionExtensionality int_eqEquality intEquality isect_memberEquality voidEquality computeAll hyp_replacement imageElimination universeEquality imageMemberEquality baseClosed axiomEquality functionEquality applyLambdaEquality addEquality minusEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].
    \mforall{}[d:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].
        (Moessner(r;x;y;1;\mlambda{}i.if  (i  =\msubz{}  0)  then  0  else  d  (i  -  1)  fi  ;k)
        =  \mPi{}(i\mmember{}upto(k)).((((k  -  i)  \mcdot{}r  1)*atom(x)+atom(y)))\^{}(d  i)) 
    supposing  \mneg{}(x  =  y)



Date html generated: 2018_05_21-PM-10_14_18
Last ObjectModification: 2017_07_26-PM-06_35_31

Theory : power!series


Home Index