Nuprl Lemma : KozenSilva-corollary0
∀[r:CRng]. ∀[x,y:Atom].
  ∀[d:ℕ ⟶ ℕ]. ∀[k:ℕ].
    (Moessner(r;x;y;1;λi.if (i =z 0) then 0 else d (i - 1) fi k)
    = Π(i∈upto(k)).((((k - i) ⋅r 1)*atom(x)+atom(y)))^(d i)
    ∈ PowerSeries(r)) 
  supposing ¬(x = y ∈ Atom)
Proof
Definitions occuring in Statement : 
Moessner: Moessner(r;x;y;h;d;k)
, 
fps-exp: (f)^(n)
, 
fps-scalar-mul: (c)*f
, 
fps-product: Π(x∈b).f[x]
, 
fps-add: (f+g)
, 
fps-atom: atom(x)
, 
fps-one: 1
, 
power-series: PowerSeries(X;r)
, 
upto: upto(n)
, 
atom-deq: AtomDeq
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
atom: Atom
, 
equal: s = t ∈ T
, 
rng_nat_op: n ⋅r e
, 
crng: CRng
, 
rng_one: 1
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
crng: CRng
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
rng: Rng
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
KozenSilva-theorem, 
fps-one_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
false_wf, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
nat_properties, 
nequal-le-implies, 
zero-add, 
nat_wf, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
squash_wf, 
true_wf, 
power-series_wf, 
not_wf, 
equal-wf-base, 
atom_subtype_base, 
crng_wf, 
upto_wf, 
list-subtype-bag, 
int_seg_wf, 
subtype_rel_self, 
bag_wf, 
fps-product_wf, 
atom-valueall-type, 
atom-deq_wf, 
fps-exp_wf, 
fps-add_wf, 
fps-scalar-mul_wf, 
rng_nat_op_wf, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
rng_one_wf, 
fps-atom_wf, 
int_seg_subtype_nat, 
fps-mul_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
add-subtract-cancel, 
fps-one-slice, 
fps-compose_wf, 
valueall-type_wf, 
deq_wf, 
iff_weakening_equal, 
fps-compose-one, 
mul_one_fps, 
add-associates, 
add-swap, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
atomEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
sqequalRule, 
productElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
hypothesis_subsumption, 
applyEquality, 
functionExtensionality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
hyp_replacement, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
functionEquality, 
applyLambdaEquality, 
addEquality, 
minusEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].
    \mforall{}[d:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].
        (Moessner(r;x;y;1;\mlambda{}i.if  (i  =\msubz{}  0)  then  0  else  d  (i  -  1)  fi  ;k)
        =  \mPi{}(i\mmember{}upto(k)).((((k  -  i)  \mcdot{}r  1)*atom(x)+atom(y)))\^{}(d  i)) 
    supposing  \mneg{}(x  =  y)
Date html generated:
2018_05_21-PM-10_14_18
Last ObjectModification:
2017_07_26-PM-06_35_31
Theory : power!series
Home
Index