Nuprl Lemma : not-nullset
∀[p:FinProbSpace]. ¬nullset(p;λs.True) supposing ¬¬Konig(||p||)
Proof
Definitions occuring in Statement : 
Konig: Konig(k), 
nullset: nullset(p;S), 
finite-prob-space: FinProbSpace, 
length: ||as||, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
true: True, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
finite-prob-space: FinProbSpace, 
nullset: nullset(p;S), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
guard: {T}, 
qdiv: (r/s), 
qmul: r * s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
qinv: 1/r, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
Konig: Konig(k), 
p-outcome: Outcome, 
p-open: p-open(p), 
int_seg: {i..j-}, 
nat: ℕ, 
le: A ≤ B, 
rev_uimplies: rev_uimplies(P;Q), 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bnot: ¬bb, 
assert: ↑b, 
p-measure-le: measure(C) ≤ q, 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
set_blt: a <b b, 
band: p ∧b q, 
infix_ap: x f y, 
set_le: ≤b, 
pi2: snd(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
grp_le: ≤b, 
pi1: fst(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
lt_int: i <z j, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
random-variable: RandomVariable(p;n), 
p-open-member: s ∈ C
Lemmas referenced : 
nullset_wf, 
true_wf, 
nat_wf, 
p-outcome_wf, 
not_wf, 
Konig_wf, 
length_wf_nat, 
rationals_wf, 
finite-prob-space_wf, 
qinv-positive, 
qless-int, 
qdiv_wf, 
int_nzero-rational, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
nequal_wf, 
qless_wf, 
all_wf, 
p-open-member_wf, 
p-measure-le_wf, 
equal-wf-base, 
double-negation-hyp-elim, 
eq_int_wf, 
int_seg_wf, 
assert_of_eq_int, 
subtype_rel_function, 
int_seg_subtype, 
false_wf, 
subtype_rel_self, 
assert_wf, 
le_wf, 
nat_properties, 
decidable__equal_int, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
length_wf, 
decidable__le, 
natural_number_wf_p-outcome, 
nequal-le-implies, 
decidable__lt, 
neg_assert_of_eq_int, 
exists_wf, 
expectation-constant, 
int-subtype-rationals, 
subtype_rel_set, 
int-equal-in-rationals, 
int_seg_subtype_nat, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
setElimination, 
rename, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality, 
addLevel, 
instantiate, 
cumulativity, 
intEquality, 
dependent_pairFormation, 
promote_hyp, 
productEquality, 
functionExtensionality, 
dependent_pairEquality, 
unionElimination, 
applyLambdaEquality, 
approximateComputation, 
int_eqEquality, 
voidEquality, 
equalityElimination, 
hyp_replacement, 
allFunctionality, 
levelHypothesis, 
allLevelFunctionality, 
existsFunctionality
Latex:
\mforall{}[p:FinProbSpace].  \mneg{}nullset(p;\mlambda{}s.True)  supposing  \mneg{}\mneg{}Konig(||p||)
Date html generated:
2018_05_22-AM-00_37_04
Last ObjectModification:
2018_05_16-PM-01_03_03
Theory : randomness
Home
Index