Nuprl Lemma : expectation-constant
∀[p:FinProbSpace]. ∀[a:ℚ]. ∀[n:ℕ]. ∀[X:RandomVariable(p;n)].  E(n;X) = a ∈ ℚ supposing ∀s:ℕn ⟶ Outcome. ((X s) = a ∈ ℚ)
Proof
Definitions occuring in Statement : 
expectation: E(n;F), 
random-variable: RandomVariable(p;n), 
p-outcome: Outcome, 
finite-prob-space: FinProbSpace, 
rationals: ℚ, 
int_seg: {i..j-}, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
random-variable: RandomVariable(p;n), 
subtype_rel: A ⊆r B, 
p-outcome: Outcome, 
so_apply: x[s], 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
expectation: E(n;F), 
ycomb: Y, 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
le: A ≤ B, 
int_seg: {i..j-}, 
squash: ↓T, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
finite-prob-space: FinProbSpace, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_stable: SqStable(P), 
nat_plus: ℕ+, 
rv-shift: rv-shift(x;X)
Lemmas referenced : 
all_wf, 
int_seg_wf, 
p-outcome_wf, 
equal_wf, 
rationals_wf, 
random-variable_wf, 
nat_wf, 
finite-prob-space_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_properties, 
le_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
squash_wf, 
true_wf, 
null-seq_wf, 
iff_weakening_equal, 
length_wf, 
eq_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
ws-constant, 
expectation_wf, 
sq_stable__and, 
sq_stable__le, 
sq_stable__less_than, 
member-less_than, 
rv-shift_wf, 
cons-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intWeakElimination, 
lambdaFormation, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
productElimination, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
unionElimination, 
universeEquality, 
baseApply, 
closedConclusion, 
equalityElimination, 
impliesFunctionality
Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[X:RandomVariable(p;n)].
    E(n;X)  =  a  supposing  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  Outcome.  ((X  s)  =  a)
Date html generated:
2018_05_22-AM-00_34_45
Last ObjectModification:
2017_07_26-PM-06_59_54
Theory : randomness
Home
Index