Nuprl Lemma : qeq-functionality
∀[r,s,x:ℤ ⋃ (ℤ × ℤ-o)].  qeq(r;x) = qeq(s;x) supposing qeq(r;s) = tt
Proof
Definitions occuring in Statement : 
qeq: qeq(r;s), 
int_nzero: ℤ-o, 
b-union: A ⋃ B, 
btrue: tt, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
product: x:A × B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
int_nzero: ℤ-o, 
btrue: tt, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ, 
true: True, 
squash: ↓T
Lemmas referenced : 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
int_nzero_wf, 
product-valueall-type, 
set-valueall-type, 
nequal_wf, 
bool_wf, 
qeq_wf, 
btrue_wf, 
iff_imp_equal_bool, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-base, 
int_subtype_base, 
istype-assert, 
set_subtype_base, 
subtype_base_sq, 
int_nzero_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
mul_cancel_in_eq, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
mul_com, 
subtype_rel_self, 
iff_weakening_equal, 
intformand_wf, 
int_formula_prop_and_lemma, 
mul-associates, 
mul-commutes, 
mul-swap, 
mul_assoc, 
int_entire, 
itermConstant_wf, 
int_term_value_constant_lemma, 
zero-mul, 
zero_ann_a, 
intformor_wf, 
int_formula_prop_or_lemma, 
mul_nzero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
unionElimination, 
equalityElimination, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
callbyvalueReduce, 
because_Cache, 
productEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
independent_functionElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_pairEquality, 
equalityIstype, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
isintReduceTrue, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
promote_hyp, 
multiplyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productIsType, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
universeEquality, 
imageMemberEquality, 
inlFormation_alt
Latex:
\mforall{}[r,s,x:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].    qeq(r;x)  =  qeq(s;x)  supposing  qeq(r;s)  =  tt
Date html generated:
2020_05_20-AM-09_12_48
Last ObjectModification:
2020_01_28-PM-02_40_46
Theory : rationals
Home
Index