Nuprl Lemma : same-half-cube-of-compatible
∀k:ℕ. ∀a,b,c:ℚCube(k).
  ((↑Inhabited(c)) ⇒ (↑is-half-cube(k;c;a)) ⇒ (↑is-half-cube(k;c;b)) ⇒ Compatible(a;b) ⇒ (a = b ∈ ℚCube(k)))
Proof
Definitions occuring in Statement : 
compatible-rat-cubes: Compatible(c;d), 
inhabited-rat-cube: Inhabited(c), 
is-half-cube: is-half-cube(k;h;c), 
rational-cube: ℚCube(k), 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
cand: A c∧ B, 
ifthenelse: if b then t else f fi , 
band: p ∧b q, 
bfalse: ff, 
sq_type: SQType(T), 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
rat-point-interval: [a], 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
pi1: fst(t), 
iff: P ⇐⇒ Q, 
is-half-interval: is-half-interval(I;J), 
rat-interval-face: I ≤ J, 
inhabited-rat-interval: Inhabited(I), 
rat-interval-intersection: I ⋂ J, 
rational-interval: ℚInterval, 
rev_uimplies: rev_uimplies(P;Q), 
guard: {T}, 
true: True, 
squash: ↓T, 
prop: ℙ, 
nat: ℕ, 
rational-cube: ℚCube(k), 
rat-cube-face: c ≤ d, 
rat-cube-intersection: c ⋂ d, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
compatible-rat-cubes: Compatible(c;d), 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
qle_connex, 
qavg-eq-iff-6, 
qavg-eq-iff-4, 
qle-qavg-iff-4, 
qavg-eq-iff-8, 
uiff_transitivity, 
uiff_transitivity3, 
qavg-same, 
istype-universe, 
qavg-eq-iff-3, 
qavg-qle-iff-2, 
qavg-eq-iff-1, 
qavg-qle-iff-1, 
qavg-eq-iff-2, 
qle_antisymmetry, 
member_wf, 
qle-qavg-iff-1, 
qavg-eq-iff-7, 
qmin-eq-iff-2, 
qmax-eq-iff-2, 
qmin-eq-iff-1, 
qmax-eq-iff-1, 
assert_of_band, 
assert_of_bor, 
iff_transitivity, 
iff_weakening_equal, 
assert-q_le-eq, 
q_le_wf, 
bfalse_wf, 
assert-qeq, 
btrue_wf, 
band_wf, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
qeq_wf2, 
bor_wf, 
assert_wf, 
subtype_rel_self, 
rational-interval_wf, 
qavg_wf, 
qmax-eq-iff, 
qmax_wf, 
qmin-eq-iff, 
qle_wf, 
qmin_wf, 
rationals_wf, 
equal_wf, 
iff_weakening_uiff, 
inhabited-intersection-half-cubes, 
rat-cube-intersection-idemp, 
true_wf, 
squash_wf, 
rat-cube-intersection_wf, 
assert_functionality_wrt_uiff, 
istype-nat, 
rational-cube_wf, 
inhabited-rat-cube_wf, 
is-half-cube_wf, 
istype-assert, 
compatible-rat-cubes_wf, 
int_seg_wf, 
assert-inhabited-rat-cube, 
assert-is-half-cube
Rules used in proof : 
universeEquality, 
hyp_replacement, 
isect_memberEquality_alt, 
unionEquality, 
cumulativity, 
instantiate, 
inrFormation_alt, 
functionIsType, 
unionIsType, 
functionEquality, 
productEquality, 
promote_hyp, 
inlFormation_alt, 
unionElimination, 
independent_pairEquality, 
applyLambdaEquality, 
productIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityIstype, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
universeIsType, 
setElimination, 
natural_numberEquality, 
dependent_functionElimination, 
rename, 
functionExtensionality, 
sqequalRule, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
isectElimination, 
extract_by_obid, 
introduction, 
productElimination, 
thin, 
independent_functionElimination, 
sqequalHypSubstitution, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}a,b,c:\mBbbQ{}Cube(k).
    ((\muparrow{}Inhabited(c))
    {}\mRightarrow{}  (\muparrow{}is-half-cube(k;c;a))
    {}\mRightarrow{}  (\muparrow{}is-half-cube(k;c;b))
    {}\mRightarrow{}  Compatible(a;b)
    {}\mRightarrow{}  (a  =  b))
Date html generated:
2019_10_29-AM-07_55_06
Last ObjectModification:
2019_10_22-PM-04_38_17
Theory : rationals
Home
Index