By: |
Thm* k:{2...}, g:({2..k}), z:{2..k}. Thm* prime(z) Thm* Thm* (g':({2..k}). Thm* ({2..k}(g) = {2..k}(g') Thm* (& g'(z) = 0 Thm* (& (u:{2..k}. z<u g'(u) = g(u))) Using:[k | g | n-1] ...a THEN ExistHD Hyp:-1 |
1 |
11. {2..k}(g) = {2..k}(g') 12. g'(n-1) = 0 13. u:{2..k}. n-1<u g'(u) = g(u) h:({2..k}). {2..k}(g) = {2..k}(h) & is_prime_factorization(2; k; h) | 4 steps |
About: