(13steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
prime
factorization
existsLEMMA
1
2
2
1.
k
: {2...}
2.
n
:
3.
n1
:
.
3.
n1
<
n
3.
3.
(
g
:({2..
k
}
).
3. (
2
n1
<
k
+1
3. (
3. (
(
i
:{2..
k
}.
n1
i
0<
g
(
i
)
prime(
i
))
3. (
3. (
(
h
:({2..
k
}
).
3. ((
{2..
k
}(
g
) =
{2..
k
}(
h
) & is_prime_factorization(2;
k
;
h
)))
4.
g
: {2..
k
}
5. 2
n
6.
n
<
k
+1
7.
i
:{2..
k
}.
n
i
0<
g
(
i
)
prime(
i
)
8.
n
= 2
9.
prime(
n
-1)
h
:({2..
k
}
).
{2..
k
}(
g
) =
{2..
k
}(
h
) & is_prime_factorization(2;
k
;
h
)
By:
Inst:
Thm*
k
:{2...},
g
:({2..
k
}
),
z
:{2..
k
}.
Thm*
prime(
z
)
Thm*
Thm*
(
g'
:({2..
k
}
).
Thm* (
{2..
k
}(
g
) =
{2..
k
}(
g'
)
Thm* (
&
g'
(
z
) = 0
Thm* (
& (
u
:{2..
k
}.
z
<
u
g'
(
u
) =
g
(
u
)))
Using:[
k
|
g
|
n
-1] ...a
THEN
ExistHD Hyp:-1
Generated subgoal:
1
10.
g'
: {2..
k
}
11.
{2..
k
}(
g
) =
{2..
k
}(
g'
)
12.
g'
(
n
-1) = 0
13.
u
:{2..
k
}.
n
-1<
u
g'
(
u
) =
g
(
u
)
h
:({2..
k
}
).
{2..
k
}(
g
) =
{2..
k
}(
h
) & is_prime_factorization(2;
k
;
h
)
4
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(13steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc