is mentioned by
[chessboard_example] | |
[card_st_sized_bool] | |
[card_st_vs_boolsize] | |
Thm* (i:a. P(i) f(i) = 1 2) ({x:a| P(x) } ~ (Msize(f))) | [card_st_vs_msize] |
[card_boolset_vs_mset] | |
[boolsize_wf] | |
[sized_mset_wf2] | |
[msize_wf] | |
[nsub_bij_ooc_invpair] | |
[nsub_inj_ooc_nsub_surj] | |
[nsub_inj_ooc_nsub_bij] | |
[nsub_inj_exteq_nsub_bij] | |
[nsub_surj_ooc_nsub_bij] | |
[nsub_surj_exteq_nsub_bij] | |
[nsub_inj_exteq_nsub_surj] | |
[surj_typing_imp_le] | |
[nsub_surj_imp_a_rev_inj2] | |
[nsub_bij_least_preimage_inverse] | |
[nsub_surj_imp_a_rev_inj] | |
Thm* IsEqFun(B;e) Thm* Thm* (a:, f:(a onto B). (y.least x:. (f(x)) e y) B inj a) | [nsub_surj_imp_a_rev_inj_gen] |
[iter_perm_cycles_uniform2] | |
[iter_perm_cycles_uniform] | |
[compose_iter_inj_cycles] | |
[card_nat_vs_nat_tuples_all] | |
[card_nat_vs_nat_tuples] | |
[card_nat_vs_nat_tuple] | |
[card_sigma_vs_nsub_sigma] | |
[nsub_add_rw] | |
[card_fun_vs_nsub_exp] | |
[card_pi_vs_nsub_pi] | |
[nsub_inj_factorial] | |
[nsub_inj_factorial_tail] | |
[nsub_inj_factorial2] | |
[finite_indep_sum_card] | |
[nsub_mul_rw] | |
[nsub_mul] | |
[nsub_add] | |
[intseg_split] | |
[nsub_intiseg_rw] | |
[intiseg_intseg_plus] | |
[intiseg_intseg] | |
[nsub_intseg_rw] | |
[nsub_intseg] | |
[nsub_bool] | |
[nsub_unit] | |
[intseg_shift_by] | |
[intseg_shift] | |
[nsub_void] | |
[intseg_void] | |
Thm* a<b ((i:{a..b}B(i)) ~ ((i:{a..(b-1)}B(i))+B(b-1))) | [card_split_end_sum_intseg_family] |
Thm* (i:{a..b}B(i)) ~ ((i:{a..c}B(i))+(i:{c..b}B(i))) | [card_split_sum_intseg_family] |
[card_nsub0_union_2] | |
[card_nsub0_union] | |
[card_union_vs_sigma] | |
[union_sigma_inverses] | |
Thm* (i:{a..b}B(i)) ~ ((i:{a..c}B(i))(i:{c..b}B(i))) | [card_split_prod_intseg_family] |
[seq_cons_wf] | |
[fin_card_vs_nat_eq] | |
[counting_is_unique] | |
[nsub_not_infinite] | |
Thm* (x:k. y:B(x). Q(x;y)) (f:(x:kB(x)). x:k. Q(x;f(x))) | [dep_finite_choice] |
Thm* (x:k. y:A. Q(x;y)) (f:(kA). x:k. Q(x;f(x))) | [finite_choice] |
[surjection_type_nsub_surjection] | |
[surjection_type_surjection] | |
[sigma_to_union_wf] | |
[union_to_sigma_wf] | |
Thm* (i:k. Dec(P(i))) ({i:k| P(i) & (j:i. P(j)) }) | [least_exists] |
[decidable_vs_unique_nsub2] | |
[card_sum_family_intseg_singleton_elim] | |
[card0_iff_uninhabited] | |
[card_prod_family_intseg_singleton_elim] | |
[card_nsub_inj_vs_lopped] | |
[nsub_delete_rw] | |
[nsub_delete] | |
[card_void_dom_fun_unit] | |
[card1_iff_inhabited_uniquely] | |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) ~ ({a:}B(a))) | [card_sum_family_singleton_vs_intseg] |
Thm* (A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* Thm* (k:. f:(kA). i,j:k. i<j R(f(i);f(j))) | [no_finite_model_lemma] |
[nsub_is_finite] | |
[fin_plus_nat_ooc_nat] | |
[nsub_surj_least_preimage_works] | |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. f(least x:. (f(x)) e y) = y) | [nsub_surj_least_preimage_works_gen] |
[nsub_surj_least_preimage_total] | |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. (least x:. (f(x)) e y) a) | [nsub_surj_least_preimage_total_gen] |
[nsub_inj_discr_range_bijtype] | |
Thm* Thm* (k:, f:(k inj A). Thm* ({a:A| i:k. a = f(i) } Type Thm* (& f k{a:A| i:k. a = f(i) } Thm* (& Bij(k; {a:A| i:k. a = f(i) }; f)) | [nsub_inj_discr_range_bij] |
[nsub_discr_range_surjtype] | |
Thm* Thm* (k:, f:(kA). Thm* ({a:A| i:k. a = f(i) } Type Thm* (& f k{a:A| i:k. a = f(i) } Thm* (& Surj(k; {a:A| i:k. a = f(i) }; f)) | [nsub_discr_range_surj] |
[least_is_least2] | |
[least_is_least] | |
[least_satisfies] | |
[least_wf] | |
Thm* (least i:. p(i)) {i:k| p(i) & (j:i. p(j)) } | [least_characterized] |
[pigeon_hole] | |
[inj_imp_le2] | |
[inj_typing_imp_le] | |
[inj_imp_le] | |
[finite_inj_counter_example] | |
[delete_fenum_value_is_fenum] | |
[delete_fenum_value_is_inj] | |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(i) k) | [delete_fenum_value_comp2] |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(m) k) | [delete_fenum_value_comp1] |
[delete_fenum_value_wf] | |
Thm* (i.if i=a-1 j else f(i) fi) a inj b | [nsub_inj_fill_typing] |
[nsub_inj_lop_typing] | |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) =ext ({a:}B(a))) | [exteq_sum_family_singleton_vs_intseg] |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) =ext ({a:}B(a))) | [exteq_prod_family_singleton_vs_intseg] |
[exteq_singleton_vs_intseg] | |
[eq_int_is_eq_nsub] | |
[sized_bool] | |
[sized_mset] | |
[unboundedly_infinite] | |
[fin_enum] | |
[is_finite_type] |
In prior sections: int 1 bool 1 int 2 num thy 1 SimpleMulFacts IteratedBinops LogicSupplement
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html