|  | Who Cites R  async? | 
|  | 
| R_async | Def asyncR(E)
== swap adjacent[  loc(E)(x) = loc(E)(y)
  &   (is-send(E)(x))  &   (is-send(E)(y))    (is-send(E)(x))  &  (is-send(E)(y))] | 
 | |  | Thm*  E:EventStruct. asyncR(E)  (|E| List)   (|E| List)   Prop | 
|  | 
| R_permutation | Def R_permutation(E) == swap adjacent[True] | 
|  | 
| event_str | Def EventStruct == E:Type  M:MessageStruct  (E   |M|)  (E   Label)  (E    )  Top | 
 | |  | Thm* EventStruct  Type{i'} | 
|  | 
| message_str | Def MessageStruct == M:Type  C:DecidableEquiv  (M   |C|)  (M   Label)  (M    )  Top | 
 | |  | Thm* MessageStruct  Type{i'} | 
|  | 
| lbl | Def Label == {p:Pattern|  ground_ptn(p) } | 
 | |  | Thm* Label  Type | 
|  | 
| dequiv | Def DecidableEquiv == T:Type  E:T   T     EquivRel(T)(  (_1 E _2))  Top | 
 | |  | Thm* DecidableEquiv  Type{i'} | 
|  | 
| assert | Def  b == if b  True else False fi | 
 | |  | Thm*  b:  . b  Prop | 
|  | 
| trace_property | Def TraceProperty(E) == (|E| List)   Prop | 
|  | 
| carrier | Def |S| == 1of(S) | 
 | |  | Thm*  S:Structure. |S|  Type | 
|  | 
| event_is_snd | Def is-send(E) == 1of(2of(2of(2of(2of(E))))) | 
 | |  | Thm*  E:EventStruct. is-send(E)  |E|    | 
|  | 
| event_loc | Def loc(E) == 1of(2of(2of(2of(E)))) | 
 | |  | Thm*  E:EventStruct. loc(E)  |E|   Label | 
|  | 
| swap_adjacent | Def swap adjacent[P(x;y)](L1,L2)
==  i:  (||L1||-1). P(L1[i];L1[(i+1)])  &  L2 = swap(L1;i;i+1)  A List | 
 | |  | Thm*  A:Type, P:(A   A   Prop). swap adjacent[P(x,y)]  (A List)   (A List)   Prop | 
|  | 
| int_seg | Def {i..j  } == {k:  | i  k  <  j } | 
 | |  | Thm*  m,n:  . {m..n  }  Type | 
|  | 
| lelt | Def i  j  <  k == i  j  &  j < k | 
|  | 
| le | Def A  B ==  B < A | 
 | |  | Thm*  i,j:  . (i  j)  Prop | 
|  | 
| not | Def  A == A   False | 
 | |  | Thm*  A:Prop. (  A)  Prop | 
|  | 
| preserved_by | Def R preserves P ==  x,y:T. P(x)   (x R y)   P(y) | 
 | |  | Thm*  T:Type, P:(T   Prop), R:(T   T   Prop). R preserves P  Prop | 
|  | 
| pi1 | Def 1of(t) == t.1 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 1of(p)  A | 
|  | 
| pi2 | Def 2of(t) == t.2 | 
 | |  | Thm*  A:Type, B:(A   Type), p:(a:A  B(a)). 2of(p)  B(1of(p)) | 
|  | 
| top | Def Top == Void given Void | 
 | |  | Thm* Top  Type | 
|  | 
| ground_ptn | Def ground_ptn(p)
 == Case(p)
 Case ptn_var(v) = > 
 false  Case ptn_pr( < x, y > ) = > 
 ground_ptn(x)   ground_ptn(y)
 Default = >  true  (recursive) | 
 | |  | Thm*  p:Pattern. ground_ptn(p)    | 
|  | 
| ptn | Def Pattern == rec(T.ptn_con(T)) | 
 | |  | Thm* Pattern  Type | 
|  | 
| swap | Def swap(L;i;j) == (L o (i, j)) | 
 | |  | Thm*  T:Type, L:T List, i,j:  ||L||. swap(L;i;j)  T List | 
|  | 
| permute_list | Def (L o f) == mklist(||L||;  i.L[(f(i))]) | 
 | |  | Thm*  T:Type, L:T List, f:(  ||L||    ||L||). (L o f)  T List | 
|  | 
| select | Def l[i] == hd(nth_tl(i;l)) | 
 | |  | Thm*  A:Type, l:A List, n:  . 0  n   n < ||l||   l[n]  A | 
|  | 
| length | Def ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive) | 
 | |  | Thm*  A:Type, l:A List. ||l||    | 
 | |  | Thm* ||nil||    | 
|  | 
| case_default | Def Default = >  body(value,value) == body | 
|  | 
| band | Def p   q == if p  q else false  fi | 
 | |  | Thm*  p,q:  . (p   q)    | 
|  | 
| case_lbl_pair | Def Case ptn_pr( < x, y > ) = >  body(x;y) cont(x1,z)
== InjCase(x1; _. cont(z,z); x2.
 InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) | 
|  | 
| case_ptn_var | Def Case ptn_var(x) = >  body(x) cont(x1,z)
== (  x1.inr(x2) = > 
 (  x1.inr(x2) = > 
 (  x1.inl(x2) = >  body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x2 / tl(x1)])
 cont
 (hd(x1)
 ,z))
 ([x1]) | 
|  | 
| case | Def Case(value) body == body(value,value) | 
|  | 
| ptn_con | Def ptn_con(T) == Atom+  +Atom+(T  T) | 
 | |  | Thm*  T:Type. ptn_con(T)  Type | 
|  | 
| flip | Def (i, j)(x) == if x=  i  j ;x=  j  i else x fi | 
 | |  | Thm*  k:  , i,j:  k. (i, j)    k    k | 
|  | 
| nth_tl | Def nth_tl(n;as) == if n   0  as else nth_tl(n-1;tl(as)) fi  (recursive) | 
 | |  | Thm*  A:Type, as:A List, i:  . nth_tl(i;as)  A List | 
|  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h | 
 | |  | Thm*  A:Type, l:A List. ||l||  1   hd(l)  A | 
 | |  | Thm*  A:Type, l:A List  . hd(l)  A | 
|  | 
| equiv_rel | Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y))  &  Sym x,y:T. E(x;y)  &  Trans x,y:T. E(x;y) | 
 | |  | Thm*  T:Type, E:(T   T   Prop). (EquivRel x,y:T. E(x,y))  Prop | 
|  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t | 
 | |  | Thm*  A:Type, l:A List. tl(l)  A List | 
|  | 
| case_inl | Def inl(x) = >  body(x) cont(value,contvalue)
== InjCase(value; x. body(x); _. cont(contvalue,contvalue)) | 
|  | 
| case_inr | Def inr(x) = >  body(x) cont(value,contvalue)
== InjCase(value; _. cont(contvalue,contvalue); x. body(x)) | 
|  | 
| mklist | Def mklist(n;f) == primrec(n;nil;  i,l. l @ [(f(i))]) | 
 | |  | Thm*  T:Type, n:  , f:(  n   T). mklist(n;f)  T List | 
|  | 
| primrec | Def primrec(n;b;c) == if n=  0  b else c(n-1,primrec(n-1;b;c)) fi  (recursive) | 
 | |  | Thm*  T:Type, n:  , b:T, c:(  n   T   T). primrec(n;b;c)  T | 
|  | 
| eq_int | Def i=  j == if i=j  true  ; false  fi | 
 | |  | Thm*  i,j:  . (i=  j)    | 
|  | 
| le_int | Def i   j ==   j <  i | 
 | |  | Thm*  i,j:  . (i   j)    | 
|  | 
| trans | Def Trans x,y:T. E(x;y) ==  a,b,c:T. E(a;b)   E(b;c)   E(a;c) | 
 | |  | Thm*  T:Type, E:(T   T   Prop). Trans x,y:T. E(x,y)  Prop | 
|  | 
| sym | Def Sym x,y:T. E(x;y) ==  a,b:T. E(a;b)   E(b;a) | 
 | |  | Thm*  T:Type, E:(T   T   Prop). Sym x,y:T. E(x,y)  Prop | 
|  | 
| refl | Def Refl(T;x,y.E(x;y)) ==  a:T. E(a;a) | 
 | |  | Thm*  T:Type, E:(T   T   Prop). Refl(T;x,y.E(x,y))  Prop | 
|  | 
| append | Def as @ bs == Case of as; nil  bs ; a.as'  [a / (as' @ bs)]  (recursive) | 
 | |  | Thm*  T:Type, as,bs:T List. (as @ bs)  T List | 
|  | 
| lt_int | Def i <  j == if i < j  true  ; false  fi | 
 | |  | Thm*  i,j:  . (i <  j)    | 
|  | 
| bnot | Def   b == if b  false  else true  fi | 
 | |  | Thm*  b:  .   b    |