PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. I(NDA) = 1of(hd(C))
11. 1of(hd(rev(C))) = q
12. 2of(hd(rev(C))) = nil
13. NDA(q,a,p)
14. i:
15. 0i
16. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
17. i = ||C||-1
18. NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)]))
19. 2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))

||rev(2of(C[i]))|| > 0

By: Witness6 i

Generated subgoals:

16. q: St
7. a: Alph
8. p: St
9. I(NDA) = 1of(hd(C))
10. 1of(hd(rev(C))) = q
11. 2of(hd(rev(C))) = nil
12. NDA(q,a,p)
13. i:
14. 0i
15. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
16. i = ||C||-1
17. NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)]))
18. 2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))
i < ||C||-1
26. q: St
7. a: Alph
8. p: St
9. I(NDA) = 1of(hd(C))
10. 1of(hd(rev(C))) = q
11. 2of(hd(rev(C))) = nil
12. NDA(q,a,p)
13. i:
14. 0i
15. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
16. i = ||C||-1
17. NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)]))
18. 2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))
19. ||2of(C[i])|| > 0
||rev(2of(C[i]))|| > 0


About:
natural_numberuniverselistproductallsubtractequalnil
applyintless_thanaddlambdapaircons